A Simplified Calculation of Reduced HCT--Basis Functions in a Finite Element Context

2012 ◽  
Vol 12 (4) ◽  
pp. 486-499 ◽  
Author(s):  
Arnd Meyer

AbstractWe present simple formulas for the definition of the basis functions on a reduced Hsieh-Clough-Tocher (rHCT) element. These formulas use the P_3-biorthogonal basis in the master triangle and form the resulting basis with the help of the edge vectors of the triangle only. This allows for a simple and efficient algorithm to compute the stiffness matrices.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1382
Author(s):  
Denis Spiridonov ◽  
Maria Vasilyeva ◽  
Aleksei Tyrylgin ◽  
Eric T. Chung

In this paper, we present a multiscale model reduction technique for unsaturated filtration problem in fractured porous media using an Online Generalized Multiscale finite element method. The flow problem in unsaturated soils is described by the Richards equation. To approximate fractures we use the Discrete Fracture Model (DFM). Complex geometric features of the computational domain requires the construction of a fine grid that explicitly resolves the heterogeneities such as fractures. This approach leads to systems with a large number of unknowns, which require large computational costs. In order to develop a more efficient numerical scheme, we propose a model reduction procedure based on the Generalized Multiscale Finite element method (GMsFEM). The GMsFEM allows solving such problems on a very coarse grid using basis functions that can capture heterogeneities. In the GMsFEM, there are offline and online stages. In the offline stage, we construct snapshot spaces and solve local spectral problems to obtain multiscale basis functions. These spectral problems are defined in the snapshot space in each local domain. To improve the accuracy of the method, we add online basis functions in the online stage. The construction of the online basis functions is based on the local residuals. The use of online bases will allow us to get a significant improvement in the accuracy of the method. We present results with different number of offline and online multisacle basis functions. We compare all results with reference solution. Our results show that the proposed method is able to achieve high accuracy with a small computational cost.


Author(s):  
Y Xu ◽  
B Liu ◽  
J Liu ◽  
S Riemenschneider

Empirical mode decomposition (EMD) is a powerful tool for analysis of non-stationary and nonlinear signals, and has drawn significant attention in various engineering application areas. This paper presents a finite element-based EMD method for two-dimensional data analysis. Specifically, we represent the local mean surface of the data, a key step in EMD, as a linear combination of a set of two-dimensional linear basis functions smoothed with bi-cubic spline interpolation. The coefficients of the basis functions in the linear combination are obtained from the local extrema of the data using a generalized low-pass filter. By taking advantage of the principle of finite-element analysis, we develop a fast algorithm for implementation of the EMD. The proposed method provides an effective approach to overcome several challenging difficulties in extending the original one-dimensional EMD to the two-dimensional EMD. Numerical experiments using both simulated and practical texture images show that the proposed method works well.


Author(s):  
R. Becker ◽  
R. Koch ◽  
M. F. Modest ◽  
H.-J. Bauer

The present article introduces a new method to solve the radiative transfer equation (RTE). First, a finite element discretization of the solid angle dependence is derived, wherein the coefficients of the finite element approximation are functions of the spatial coordinates. The angular basis functions are defined according to finite element principles on subdivisions of the octahedron. In a second step, these spatially dependent coefficients are discretized by spatial finite elements. This approach is very attractive, since it provides a concise derivation for approximations of the angular dependence with an arbitrary number of angular nodes. In addition, the usage of high-order angular basis functions is straightforward. In the current paper the governing equations are first derived independently of the actual angular approximation. Then, the design principles for the angular mesh are discussed and the parameterization of the piecewise angular basis functions is derived. In the following, the method is applied to two-dimensional test cases which are commonly used for the validation of approximation methods of the RTE. The results reveal that the proposed method is a promising alternative to the well-established practices like the Discrete Ordinates Method (DOM) and provides highly accurate approximations. A test case known to exhibit the ray effect in the DOM verifies the ability of the new method to avoid ray effects.


2014 ◽  
Vol 53 (24) ◽  
pp. F10 ◽  
Author(s):  
Karl N. Schrader ◽  
Samuel R. Subia ◽  
John W. Myre ◽  
Kenneth L. Summers

2021 ◽  
Vol 263 (1) ◽  
pp. 5301-5309
Author(s):  
Luca Alimonti ◽  
Abderrazak Mejdi ◽  
Andrea Parrinello

Statistical Energy Analysis (SEA) often relies on simplified analytical models to compute the parameters required to build the power balance equations of a coupled vibro-acoustic system. However, the vibro-acoustic of modern structural components, such as thick sandwich composites, ribbed panels, isogrids and metamaterials, is often too complex to be amenable to analytical developments without introducing further approximations. To overcome this limitation, a more general numerical approach is considered. It was shown in previous publications that, under the assumption that the structure is made of repetitions of a representative unit cell, a detailed Finite Element (FE) model of the unit cell can be used within a general and accurate numerical SEA framework. In this work, such framework is extended to account for structural-acoustic coupling. Resonant as well as non-resonant acoustic and structural paths are formulated. The effect of any acoustic treatment applied to coupling areas is considered by means of a Generalized Transfer Matrix (TM) approach. Moreover, the formulation employs a definition of pressure loads based on the wavenumber-frequency spectrum, hence allowing for general sources to be fully represented without simplifications. Validations cases are presented to show the effectiveness and generality of the approach.


2021 ◽  
pp. 089270572110420
Author(s):  
Bazle Z (Gama) Haque ◽  
John W Gillespie

Soft-ballistic sub-laminate (SBSL) made from ultra-high molecular weight polyethylene (UHMWPE) fibers in [0/90] stacking sequence are the building block of a multi-layer soft-ballistic armor pack (SBAP, aka Soft Armor). A systematic study of the perforation dynamics of a single layer SBSL and several multi-layer SBAPs (2, 3, 4, 8, 16, 24, 32 layers) is presented for the first time in the literature. A previously validated finite element model of transverse impact on a single layer is used to study the perforation mechanics of multi-layer SBAPs with friction between individual layers. Following the classical definition of ballistic limit velocity, a minimum perforation velocity has been determined for free-standing single layer SBSL and multi-layer SBAPs. For the multi-layer SBAPs, complete perforations have been identified as progressive perforation of individual layers through the thickness. The minimum perforation velocities of multi-layer SBAPS is linear with the areal density for the eight (8) layer target and thicker. Large deformation behavior and perforation mechanics of the SBAPs is discussed in detail.


2016 ◽  
Vol 35 (23) ◽  
pp. 1696-1711 ◽  
Author(s):  
Danilo S Victorazzo ◽  
Andre De Jesus

In this paper we extend Kollár and Pluzsik’s thin-walled anisotropic composite beam theory to include multiple cells with open branches and booms, and present a finite element formulation utilizing the stiffness matrix obtained from this theory. To recover the 4 × 4 compliance matrix of a beam containing N closed cells, we solve an asymmetric system of 2N + 4 linear equations four times with unitary section loads and extract influence coefficients from the calculated strains. Finally, we compare 4 × 4 stiffness matrices of a multicelled beam using this method against matrices obtained using the finite element method to demonstrate accuracy. Similarly to its originating theory, the effects of shear deformation and restrained warping are assumed negligible.


Sign in / Sign up

Export Citation Format

Share Document