scholarly journals Geographic trends in range sizes explain patterns in bird responses to urbanization in Europe

2019 ◽  
Vol 5 (2) ◽  
pp. 16-29 ◽  
Author(s):  
Michal Ferenc ◽  
Ondřej Sedláček ◽  
Roman Fuchs ◽  
Maurizio Fraissinet ◽  
David Storch

Abstract The probability of occurrence of bird species in towns/cities increases with their range sizes, and Rapoport’s rule states that range sizes increase with latitude. To test the hypothesis that the increasing number of bird species persisting in cities at higher latitudes of Europe is linked to their larger range sizes, we compiled data on bird communities of: a) 41 urban bird atlases; b) 37 city core zones from published sources; c) regions of nine grid cells of the EBCC Atlas of European Breeding Birds around each city. We tested whether the proportion of species from particular regional bird assemblages entering cities (i.e., proportional richness) was related to the geographical position, mean range size of regional avifaunas, proportion of vegetated areas and city habitat heterogeneity. The mean range sizes of the observed and randomly selected urban avifaunas were contrasted. The proportional richness of urban avifaunas was positively related to the geographic position and mean range size of birds in regional assemblages. The evidence favoured range sizes if considering the European range sizes or latitudinal extents, but was limited for global range sizes. Randomizations tended to show larger range sizes for the real avifaunas than in the randomly selected ones. For urban core zones, the results were less clear-cut with some evidence only in favour of the European range sizes. No role of vegetation or habitat heterogeneity was found. In conclusion, while vegetation availability or heterogeneity did not show any effects, spatial position and range sizes of birds in regional assemblages seemed to influence the proportional richness of cities and their core zones. Factors correlated with spatial position (e.g., climate) might increase the attractivity of particular cities to birds. However, the effects of range sizes indicated that urbanization possibly has more negative impacts on the avifauna in the regions occupied by less widespread species.

2018 ◽  
Author(s):  
Jin-Yong Kim ◽  
Changwan Seo ◽  
Seungbum Hong ◽  
Sanghoon Lee ◽  
Soo Hyung Eo

AbstractRange-size distributions are important for understanding species richness patterns and led to the development of the controversial Rapoport’s rule and Rapoport-rescue effect. This study aimed to understand the relationship between species richness and range-size distribution in relation to environmental factors. The present study tested the following: (1) altitudinal Rapoport’s rule, (2) climatic and ambient energy hypotheses, (3) non-directional rescue effect, and (4) effect of environmental factors on range-size group. Altitudinal species range-size distribution increased with increasing altitude and showed a negative relationship with climatic variables and habitat heterogeneity, and a positive relationship with primary productivity. These results support the altitudinal Rapoport’s rule and climatic hypothesis; however, they do not fully support the ambient energy hypothesis. Results from testing the non-directional rescue effect showed that the inflow intensity of species from both directions (high and low elevations) affected species richness. And we found that the 2nd and 3rd quartile species distribution were the main cause of a mid-peak of species richness and the non-directional rescue effect. Additionally, the 2nd quartile species richness was highly related to minimum temperature and possessed thermal specialist species features, and the 3rd quartile species richness was highly related to habitat heterogeneity and primary productivity. Although altitudinal range-size distribution results were similar to the altitudinal Rapoport’s rule, the mid-peak pattern of species richness could not be explained by the Rapoport’s-rescue effect; however, the non-directional rescue effect could explain a mid-peak pattern of species richness.


1996 ◽  
Vol 351 (1342) ◽  
pp. 897-912 ◽  

The attempt to identify and explain pattern in the extent of species’ geographical distributions at regional scales has been central to macroecology. However, with the exception of abundance, consistent relations between other variables and species geographic extent have not been forthcoming. One reason may be that studies often encompass the entire geographic ranges of only a fraction of the species in the taxon under consideration, setting biologically artificial boundaries to the area of study, and only revealing part of the pattern in question. Here, we examine patterns in the geographic range sizes of birds in the New World. By testing for patterns in the entire avifauna of a geographically isolated region (95% of species are endemic), we avoid many of the problems of previous studies. Most New World bird species have small geographic ranges, although the frequency distribution of logarithmically transformed ranges is left-skewed. The geographic range size-body size relation is approximately triangular. Small-bodied species may have either large or small ranges, whereas large-bodied species have only large ranges. Species threatened with extinction more often fall nearer to (or below) the lower edge defined by the majority of species in this triangle than do non-threatened species, suggesting that this represents the minimum area needed to sustain viable populations of species of different sizes. The maximum range size attained by species is relatively constant across body sizes, but falls short of the maximum possible given the land area of the New World, and so cannot be limited by this constraint. What does limit maximum range size is thus unclear. There is a latitudinal gradient in the size of species geographic ranges. Species which have the latitudinal mid-point of their geographic ranges at high latitudes either side of the equator tend to have large range sizes, whereas those with mid-points at lower latitudes tend to have small range sizes (as expected from Rapoport’s rule). However, this pattern is not symmetrical about the equator, but rather, at about 17° N. It appears to be a consequence of the biogeography of the New World, and implies that mechanisms suggested to explain Rapoport’s rule based on climatic variability are incorrect. Migrant birds have larger geographic ranges, on average, than do residents. They are also larger-bodied, and tend to inhabit more northerly latitudes than residents, but their larger ranges are not the simple consequence of these other patterns. The patterns we demonstrate, in particular those relating to maximum range size across body sizes and to latitudinal variation in range size, have significant consequences for the understanding of what determines species geographic range sizes.


2014 ◽  
Vol 1010-1012 ◽  
pp. 121-125
Author(s):  
Wen Bin Li ◽  
Zhi Ming Mo ◽  
Xing Ting Chen ◽  
Chun Huang ◽  
Ming Feng Xu

To examine the impact of habitat heterogeneity on the bird communities, we investigated the structural differences of various bird communities occurring in heterogeneous habitats in the subtropical hilly areas of southern China. We used indicator Species Analysis (ISA) to test the association of specific bird species to particular habitats. We performed Two-way Cluster Analysis to find species patterning in response to habitat fragmentation. Our results demonstrated that heterogeneous habitats promoted bird diversity and human activities affected bird behavior. Indicator Species Analysis demonstrated that similar habitats had similar bird communities, while different habitats supported various bird indicator species. Although habitat diversity increased bird diversity of a region, it was unfavorable for the maintenance of specialized birds in the forests of the subtropical hilly area.


2014 ◽  
Vol 369 (1643) ◽  
pp. 20130197 ◽  
Author(s):  
Véronique St-Louis ◽  
Anna M. Pidgeon ◽  
Tobias Kuemmerle ◽  
Ruth Sonnenschein ◽  
Volker C. Radeloff ◽  
...  

Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.


2021 ◽  
Author(s):  
◽  
Roald Egbert Harro Bomans

<p>Introduced mammalian predators, namely possums, stoats and rats, are the leading cause of decline in native avifauna in New Zealand. The control of these species is essential to the persistence of native birds. A major component of mammal control in New Zealand is carried out through the aerial distribution of the toxin sodium monofluoroacetate (otherwise known as 1080). The use of this toxin, however, is subject to significant public debate. Many opponents of its use claim that forests will ‘fall silent’ following aerial operations, and that this is evidence of negative impacts on native bird communities. With the continued and likely increased use of this poison, monitoring the outcomes of such pest control operations is necessary to both address these concerns and inform conservation practice. The recent growth in autonomous recording units (ARUs) provides novel opportunities to conduct monitoring using bioacoustics. This thesis used bioacoustic techniques to monitor native bird species over three independent aerial 1080 operations in the Aorangi and Rimutaka Ranges of New Zealand.  In Chapter 2, diurnal bird species were monitored for 10-12 weeks over two independent operations in treatment and non-treatment areas. At the community level, relative to non-treatment areas, the amount of birdsong recorded did not decrease significantly in treatment areas across either of the operations monitored. At the species level, one species, the introduced chaffinch (Fringilla coelebs), showed a significant decline in the prevalence of its calls in the treatment areas relative to non-treatment areas. This was observed over one of the two operations monitored. Collectively, these results suggest that diurnal native avifaunal communities do not ‘fall silent’ following aerial 1080 operations.  The quantity of data produced by ARUs can demand labour-intensive manual analysis. Extracting data from recordings using automated detectors is a potential solution to this issue. The creation of such detectors, however, can be subjective, iterative, and time-consuming. In Chapter 3, a process for developing a parsimonious, template-based detector in an efficient, objective manner was developed. Applied to the creation of a detector for morepork (Ninox novaeseelandiae) calls, the method was highly successful as a directed means to achieve parsimony. An initial pool of 187 potential templates was reduced to 42 candidate templates. These were further refined to a 10-template detector capable of making 98.89% of the detections possible with all 42 templates in approximately a quarter of the processing time for the dataset tested. The detector developed had a high precision (0.939) and moderate sensitivity (0.399) with novel recordings, developed for the minimisation of false-positive errors in unsupervised monitoring of broad-scale population trends.  In Chapter 4, this detector was applied to the short-term 10-12 week monitoring of morepork in treatment and non-treatment areas around three independent aerial 1080 operations; and to longer-term four year monitoring in two study areas, one receiving no 1080 treatment, and one receiving two 1080 treatments throughout monitoring. Morepork showed no significant difference in trends of calling prevalence across the three independent operations monitored. Longer-term, a significant quadratic effect of time since 1080 treatment was found, with calling prevalences predicted to increase for 3.5 years following treatment. Collectively, these results suggest a positive effect of aerial 1080 treatment on morepork populations in the lower North Island, and build on the small amount of existing literature regarding the short- and long-term response of this species to aerial 1080 operations.</p>


2018 ◽  
Vol 29 (1) ◽  
pp. 144-158 ◽  
Author(s):  
MARTIN ŠÁLEK ◽  
VÍT ZEMAN ◽  
RADOVAN VÁCLAV

SummaryEffective conservation measures for any bird species across their distribution ranges require detailed knowledge of landscape-specific differences in habitat associations. The Ortolan Bunting Emberiza hortulana is a farmland bird species, which experienced massive population declines during the recent decades and has become a conservation priority in many European countries. Thus, identification of the key habitat features is an important prerequisite for the conservation of the species. Here we investigate habitat associations of the Ortolan Bunting for the remaining breeding population of the species in the Czech Republic. This population is remarkable by its distribution in two markedly different environments – farmland and post-mining landscapes. The main objectives of this study were to identify habitat features associated with Ortolan Bunting occurrence within the two contrasting landscapes and at two spatial scales. Our results reveal a high degree of habitat plasticity by Ortolan Buntings in the Czech Republic which was revealed by the landscape- and scale- specific habitat associations. Habitat heterogeneity, in terms of compositional and configurational diversity, and the cover of bare ground were the most important predictors of Ortolan Bunting occurrence in both landscape types. In farmland, the species occurrence was positively associated with shrub and woody vegetation, poppy fields and set-asides, and negatively associated with grasslands, gardens/orchards, seedlings and urban habitats. In the post-mining landscape, the cover of herb vegetation and greater slope steepness and terrain ruggedness were most important habitat features. Ortolan Buntings in the post-mining landscape appear to avoid patches with a higher cover of shrub and woody vegetation, forests, seedlings and urban areas. We propose that conservation measures for Ortolan Buntings should focus on enhancing farmland habitat heterogeneity, but also on regulating the rate of succession in disturbed environments, such as post-mining landscapes.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1975
Author(s):  
Wei Liu ◽  
Yuyi Jin ◽  
Yongjie Wu ◽  
Chenhao Zhao ◽  
Xingcheng He ◽  
...  

To effectively protect a species, understanding its habitat needs and threats across its life-history stages is necessary. The Black-necked Crane (Grus nigricollis) is an endangered wetland bird species of the Qinghai–Tibetan Plateau, which is an important grazing area in China. To overcome the conflict between increasing grazing activities and the protection of wild cranes, we investigated the variation of habitat utilization within the home range of cranes at different stages (preincubation, incubation, postfledging, and fully fledged stages). We manually tracked 13 pairs of cranes in the Zoige international wetland, used the fixed-kernel-polygon (FKP) method to determine home-range size, and used satellite images to identify different habitat types. The average home-range size was 143.38 ± 34.46 ha. Cranes were most often located in meadow habitats followed by marsh meadows and marshes. During the postfledging stage, home-range size was significantly decreased, with the proportion of marsh habitat slightly increased. Since this stage is crucial for young-crane survival, research on the importance of marshes and effective protection measures should be further strengthened.


2020 ◽  
Vol 12 (2) ◽  
pp. 635 ◽  
Author(s):  
Mathias Schaefer ◽  
Nguyen Xuan Thinh ◽  
Stefan Greiving

As negative impacts of climate change tend to increase in the future, densely-populated cities especially need to take action on being robust against natural hazards. Consequently, there is a growing interest from scientists in measuring the climate resilience of cities and regions. However, current measurements are usually assessed on administrative levels, not covering potential hotspots of hazardous or sensitive areas. The main aim of this paper focusses on the measurement of climate resilience in the City of Dortmund, Germany, using Geographic Information Systems (GIS). Based on a literature review, we identified five essential components of climate resilience and initially designed a theoretical framework of 18 indicators. Since climate resilience is still a vague concept in scientific discourses, we implemented local expert knowledge and fuzzy logic modelling into our analysis. The benefit of this study not only lies in the fine-scale application, but also in the relevance for multiple disciplines by integrating social and ecological factors. We conclude that climate resilience varies within the city pattern, with the urban core tending to be less resilient than its surrounding districts. As almost the entire geodata set used is freely available, the presented indicators and methods are to a certain degree applicable to comparable cities.


2017 ◽  
Vol 23 (12) ◽  
pp. 1472-1481 ◽  
Author(s):  
Monika Böhm ◽  
Rachael Kemp ◽  
Rhiannon Williams ◽  
Ana D. Davidson ◽  
Andrés Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document