scholarly journals From continental platform towards rifting of the Tisza Unit in the Late Triassic to Early Cretaceous

2013 ◽  
Vol 64 (4) ◽  
pp. 279-290 ◽  
Author(s):  
Géza Császár ◽  
Balázs Szinger ◽  
Olga Piros

Abstract The Upper Triassic-Lower Cretaceous successions of the Transdanubian part of the Mecsek and Villány- Bihor Zones of the Tisza Unit have been studied from the lithological, lithostratigraphical, sedimentological, microfossil and microfacies points of view in order to correlate and interpret the significant differences between them and to draw a conclusion about their geological and paleogeographical history. After an overview of the paleogeographical reconstructions of the broader area, the succession of the Mecsek and Villány-Bihor Zones and the debated Máriakéménd-Bár Range are introduced. Until the end of the Middle Triassic the study area acted as an entity. The first fundamental difference between the two zones can be recognized in the Late Triassic when marine carbonates were replaced by thick fluvial siliciclastics in the Mecsek Zone, while it is represented only by small, local lenses with a few and thin dolostone intercalations in the Villány Zone. The Mecsek Zone is bordered southward by one of the large listric faults to the north of which very thick siliciclastics developed in the Early to Middle Jurassic, whereas it is highly lacunose in the larger western part of the Villány-Bihor Zone. The break at the base is subaerial, higher in the succession it is shallow submarine. The sediment is silty, occasionally sandy crinoidal limestone of late Early Jurassic or even Middle Jurassic in age. The Upper Jurassic in the Mecsek Zone is composed of deep-water cherty limestone while in the Villány Zone it became a thick, shallowing pelagic limestone with reworked patch reef fragments. It is clear evidence that the Mecsek Zone had a thinned continental crust thanks to the nearby rift zone while in the Villány Zone the crust remained thick. The actualized version of the Plašienka’s paleogeographical model (Plašienka 2000) is introduced

1973 ◽  
Vol 13 (1) ◽  
pp. 49 ◽  
Author(s):  
Keith Crank

The Barrow Island oil field, which was discovered by the drilling of Barrow 1 in 1964, was declared commercial in 1966. Since then 520 wells have been drilled in the development of this field which has resulted in 309 Windalia Sand oil producers (from about 2200 feet), eight Muderong Greensand oil wells (2800 feet), five Neocomian/Upper Jurassic gas and oil producers (6200 to 6700 feet), eight Barrow Group water source wells and 157 water injection wells.Production averages 41,200 barrels of oil per day, and 98% of this comes from the shallow Windalia Sand Member of Cretaceous (Aptian to Albian) age. These reserves are contained in a broad north-plunging nose truncated to the south by a major down-to-the-south fault. The anticline is thought to have been formed initially from a basement uplift during Late Triassic to Early Jurassic time. Subsequent periods of deposition, uplift and erosion have continued into the Tertiary and modified the structure to its present form. The known sedimentary section on Barrow Island ranges from Late Jurassic to Miocene.The Neocomian/Jurassic accumulations are small and irregular and are not thought to be commercial in themselves. The Muderong Greensand pool is also a limited, low permeability reservoir. Migration of hydrocarbons is thought to have occurred mainly in the Tertiary as major arching did not take place until very late in the Cretaceous or early in the Palaeocene.The Windalia Sand reservoir is a high porosity, low permeability sand which is found only on Barrow Island. One of the most unusual features of this reservoir is the presence of a perched gas cap. Apparently the entire sand was originally saturated with oil, and gas subsequently moved upstructure from the north, displacing it. This movement was probably obstructed by randomly-located permeability barriers.


Paleobiology ◽  
1992 ◽  
Vol 18 (1) ◽  
pp. 50-79 ◽  
Author(s):  
Benjamin J. Greenstein

The class Echinoidea apparently originated during the Ordovician Period and diversified slowly through the Paleozoic Era. The clade then mushroomed in diversity beginning in Late Triassic time and continued expanding into the present. Although this evolutionary history is generally accepted, the taphonomic overprint affecting it has not been explored. To gain a more accurate perception of the evolutionary history of the group, I have compared the diversity history of the family Cidaridae (Echinodermata: Echinoidea) with the preservational style of fossil type species using literature-derived data. The Cidaridae apparently originated in Middle Triassic time and diversified slowly through the Neocomian (Early Cretaceous). Diversity was maintained through the remainder of the Cretaceous and Tertiary Periods, reflecting the diversity history of the subclass. Characterization of the preservational style of type fossil material for the family revealed the following breakdown of preservational states: 60% of species were described on the basis of disarticulated skeletal material, primarily spines; 20% based on intact coronas denuded of spines, apical system, Aristotle's lantern and peristomial plates; 10% based on large coronal fragments; and 10% based on other skeletal elements. This distribution may represent the effect of a disarticulation threshold on the condition of echinoid carcasses before final burial and suggests that preservation of intact specimens may be very unlikely. For cidaroids, previous work has suggested that this threshold is likely to be reached after 7 days of decay.Comparison of the diversity history of the Cidaridae with the preservation data reveals that characteristic patterns of taphonomic overprint have affected the group since its origination in Middle Triassic time, and the nature of that overprint has changed over time: the early diversity history of the group is characterized by occurrences of fragmented fossil material, with spines predominant; further radiation of the group in mid-Jurassic time coincided with an increase in modes of preservation, ranging between exceptionally well-preserved material and disarticulated skeletal elements. Finally, type material is more rarely described from younger stratigraphic intervals (Miocene–Pleistocene) and consists predominantly of disarticulated skeletal elements and coronal fragments larger than an interambulacrum in size. Intact, denuded coronas are noticeably lacking.The number of type species of Cidaridae described in each stratigraphic interval has not been consistent during post-Paleozoic time. Middle Triassic, Malm (Upper Jurassic), Senonian (Upper Cretaceous) and Eocene series yielded significantly (α = .05) higher numbers of type specimens per million years, while the Lias (Lower Jurassic), Dogger (Mid-Jurassic), Lower Cretaceous and Paleocene yielded significantly (α = .05) lower numbers of type specimens per million years. This may be the result of a combination of taxonomic, sampling, and geographical biases.


2004 ◽  
Vol 5 ◽  
pp. 99-112 ◽  
Author(s):  
Stefan Piasecki ◽  
John H. Callomon ◽  
Lars Stemmerik

The Jurassic of Store Koldewey comprises a Middle Jurassic succession towards the south and an Upper Jurassic succession towards the north. Both successions onlap crystalline basement and coarse sediments dominate. Three main lithostratigraphical units are recognised: the Pelion Formation, including the Spath Plateau Member, the Payer Dal Formation and the Bernbjerg Formation. Rich marine macrofaunas include Boreal ammonites and the successions are dated as Late Bathonian – Early Callovian and Late Oxfordian – Early Kimmeridgian on the basis of new collections combined with material in earlier collections. Fine-grained horizons and units have been analysed for dinoflagellate cysts and the stratigraphy of the diverse and well-preserved flora has been integrated with the Boreal ammonite stratigraphy. The dinoflagellate floras correlate with contemporaneous floras from Milne Land, Jameson Land and Hold with Hope farther to the south in East Greenland, and with Peary Land in North Greenland and Svalbard towards the north. The Middle Jurassic flora shows local variations in East Greenland whereas the Upper Jurassic flora gradually changes northwards in East Greenland. A Boreal flora occurs in Peary Land and Svalbard. The characteristic and stratigraphically important species Perisseiasphaeridium pannosum and Oligosphaeridium patulum have their northernmost occurrence on Store Koldewey, whereas Taeniophora iunctispina and Adnatosphaeridium sp. extend as far north as Peary Land. Assemblages of dinoflagellate cysts are used to characterise significant regional flooding events and extensive sequence stratigraphic units.


1991 ◽  
Vol 14 (1) ◽  
pp. 33-42 ◽  
Author(s):  
C. A. Knutson ◽  
I. C. Munro

AbstractThe Beryl Field, the sixth largest oil field in the UK sector of the North Sea, is located within Block 9/13 in the west-central part of the Viking Graben. The block was awarded in 1971 to a Mobil operated partnership and the 9/13-1 discovery well was drilled in 1972. The Beryl A platform was emplaced in 1975 and the Beryl B platform in 1983. To date, ninety-five wells have been drilled in the field, and drilling activity is anticipated into the mid-1990s.Commercial hydrocarbons occur in sandstone reservoirs ranging in age from Upper Triassic to Upper Jurassic. Structurally, the field consists of a NNE orientated horst in the Beryl A area and westward tilted fault blocks in the Beryl B area. The area is highly faulted and complicated by two major and four minor unconformities. The seal is provided by Upper Jurassic shales and Upper Cretaceous marls.There are three prospective sedimentary sections in the Beryl Field ranked in importance as follows: the Middle Jurassic coastal deltaic sediments, the Upper Triassic to Lower Jurassic continental and marine sediments, and the Upper Jurassic turbidites. The total ultimate recovery of the field is about 800 MMBBL oil and 1.6 TCF gas. As of December 1989, the field has produced nearly 430 MMBBL oil (primarily from the Middle Jurassic Beryl Formation), or about 50% of the ultimate recovery. Gas sales are scheduled to begin in the early 1990s. Oil and gas production is forecast until licence expiration in 2018.The Beryl Fields is located 215 miles northeast of Aberdeen, about 7 miles from the United Kingdom-Norwegian boundary. The field lies within Block 9/13 and covers and area of approximately 12 000 acres in water depths ranging from 350-400 ft. Block 9/13 contains several hydrocarbon-bearing structures, of which the Beryl Fields is the largest (Fig. 1). The field is subdivided into two producing areas: the Beryl Alpha area which includes the initial discovery well, and the Beryl Bravo area located to the north. The estimated of oil originally in place is 1400 MMBBL for Beryl A and 700 MMBBL for Beryl B. The fiel has combined gas in place of 2.8 TCF, consisting primarily of solution gas. Hydrocarbon accumulations occur in six reservoir horizons ranging in age from Upper Triassic to Upper Jurassic. The Middle Jurassic (Bathonian to Callovian) age Beryl Formation is the main reservoir unit and contains 78% of the total ultimate recovery.The field was named after Beryl Solomon, the wife of Charles Solomon, who was president of Mobil Europe in 1972 when the field was discovered. The satellite fields in Block 9/13 (Nevis, Ness and Linnhe) are named after Scottish lochs.


1976 ◽  
Vol 13 (5) ◽  
pp. 668-683 ◽  
Author(s):  
C. McGowan

A large and previously unknown ichthyosaur is reported from the Kimmeridge Clay (Upper Jurassic) of Stowbridge, Norfolk, England. The only valid genera described from the Upper and Middle Jurassic are considered to be Ophthalmosaurus Seeley and Nannopterygius von Huene, and since the Stowbridge specimen is distinct from these, a new genus and species, Grendelius mordax gen. et sp. nov., are erected. Using cluster and principal coordinates analyses, G. mordax was found to have closest phenetic affinities with Platypterygius americanus (Nace) of the North American Cretaceous, and with an undescribed ichthyosaur from the Middle Triassic of Switzerland, and least phenetic affinity with Ophthalmosaurus discus (Marsh).The phenetic analysis also revealed that the division of the Ichthyosauria into latipinnates and longipinnates is questionable. Stenopterygius quadriscissus (Quenstedt), long considered a longipinnate, is herein shown to have closer phenetic affinity with latipinnate ichthyosaurs. The close phenetic affinity between the skulls of P. americanus and the undescribed Swiss ichthyosaur is inconsistent with currently held views of cranial evolution in ichthyosaurs, and points to the shortcomings of tracing evolutionary trends in temporal sequences of fossils.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 836
Author(s):  
Zuozhen Han ◽  
Jingjing Li ◽  
Zhigang Song ◽  
Guyao Liu ◽  
Wenjian Zhong ◽  
...  

The Late Paleozoic–Early Mesozoic tectonic evolution of the Changchun-Yanji suture (CYS) was mainly associated with the Paleo-Asian and Mudanjiang tectonic regimes. However, the spatial and temporal overprinting and variations of these two regimes remains are still dispute. In order to evaluate this issue, in this contribution, we present new zircon U-Pb ages and a whole-rock geochemical and zircon Hf isotopic dataset on a suite of metamorphic rocks, including gneisses, actinolite schist, leptynites, and biotite schists, from tectonic mélanges in northern Liaoning and central Jilin provinces, NE China. Based on zircon LA-ICP-MS U-Pb dating results, protoliths show wide ranges of aging spectrum, including Paleoproterozoic (2441 Ma), Early Permian (281 Ma), Late Permian (254 Ma), and Late Triassic (230 Ma). The Permian protoliths of leptynites from the Hulan Tectonic Mélange (HLTM) and gneisses from the Kaiyuan Tectonic Mélange (KYTM) exhibit arc-related geochemical signatures, implying that the Paleo-Asian Ocean (PAO) did not close prior to the Late Permian. The Late Triassic protoliths of gneisses from the KYTM, in combination with previously reported coeval igneous rocks along the CYS, comprises a typical bimodal igneous suite in an E–W-trending belt, suggesting a post-orogenic extensional environment. Consequently, we infer that the final closure of the PAO took place during the Early–Middle Triassic. The Early Permian protoliths of biotite schists from the HLTM are alkali basaltic rocks and contain multiple older inherited zircons, which, in conjunction with the geochemical features of the rocks, indicate that they were generated in a continental rift related to the initial opening of the Mudanjiang Ocean (MO). Data from this contribution and previous studies lead us to conclude that the MO probably opened during the Middle Triassic, due to the north–south trending compression caused by the final closure of the PAO.


2020 ◽  
Vol 70 (1) ◽  
pp. 87-102
Author(s):  
Rzger A. Abdula ◽  

A collection of 165 crude oils, 12 oil seeps, and 24 extracts and recovered samples from 25 oil exploratory wells and 6 oil seeps in the Southern Mesopotamian Basin were studied. Biomarker configurations and other organic geochemistry parameters were used to discover the depositional environments and to classify the oil samples as provenance groups. Petroleum liquids were geochemically classified into four groups. The first group of oils, Middle Jurassic Zagros Fold Belt, is located in the Maysan, Basra, and Thi qar provinces of the basin that has pristane/phytane (Pr/Ph) proportions ≤0.97 and contains sufficient gammacerane. Methylphenanthrene index 1 (MPI 1) values show that the first group of oils is mature. Oils from Group 2, Upper Jurassic–Lower Cretaceous Sulaiy/Yamama, by disparity have Pr/Ph proportions between 0.72 and 1.12 and relatively moderate C28/C29 steranes, 0.52-0.88. Ts/Tm ratios indicate thermal maturity for Group 2 oils. Unlike oils from other groups, the oils from Group 3, Cretaceous to Tertiary oils, in Subba Field hold the highest canonical variable (CV) values that range between 0.43 and –2.30. The fourth group, Late Triassic-Middle Jurassic oil seeps, is the oldest among all groups. This group holds an average carbon isotope ratio –28.25‰ and –28.10‰ for saturates and aromatics respectively, which are the lowest values among all oils in the studied region. The Tithonian-Berriasian Sulaiy/Yamama oils further divided into three subgroups. The first subgroup, A, has carbon preference index (CPI) values of ≤1.08 (average 0.86) and C28/C29 sterane of 0.56-1.13 with an average of 0.65. Second subgroup, B, holds CPI ≤1.18 (average 0.99) and C28/C29 sterane 0.55-0.82 with an average of 0.63. The last subgroup, C, has CPI values ≤0.93 (average 0.85) and high C27 and C29 steranes (average 46.5% and 39.61%, respectively). In the same way, the Group 3 can be further subdivided into two subgroups based on values of carbon isotopes for saturates and aromatics. The oils from this group are heterogeneous and can be further divided into Tertiary Subgroup and Cretaceous Subgroup.


2003 ◽  
Vol 1 ◽  
pp. 145-216 ◽  
Author(s):  
Olaf Michelsen ◽  
Lars H. Nielsen ◽  
Peter N. Johannessen ◽  
Jan Andsbjerg ◽  
Finn Surlyk

A complete updated and revised lithostratigraphic scheme for the Jurassic succession of the onshore and offshore Danish areas is presented together with an overview of the geological evolution. The lithostratigraphies of Bornholm, the Danish Basin and the Danish Central Graben are described in ascending order, and a number of new units are defined. On Bornholm, the Lower–Middle Jurassic coal-bearing clays and sands that overlie the Lower Pliensbachian Hasle Formation are referred to the new Sorthat Formation (Lower Jurassic) and the revised Bagå Formation (Middle Jurassic). In the southern Danish Central Graben, the Middle Jurassic succession formerly referred to the Lower Graben Sand Formation is now included in the revised Bryne Formation. The Lulu Formation is erected to include the uppermost part of the Middle Jurassic succession, previously referred to the Bryne Formation in the northern Danish Central Graben. The Upper Jurassic Heno Formation is subdivided into two new members, the Gert Member (lower) and the Ravn Member (upper). The organic-rich part of the upper Farsund Formation, the former informal ‘hot unit’, is established formally as the Bo Member. Dominantly shallow marine and paralic deposition in the Late Triassic was succeeded by widespread deposition of offshore marine clays in the Early Jurassic. On Bornholm, coastal and paralic sedimentation prevailed. During maximum transgression in the Early Toarcian, sedimentation of organic-rich offshore clays took place in the Danish area. This depositional phase was terminated by a regional erosional event in early Middle Jurassic time, caused by uplift of the central North Sea area, including the Ringkøbing–Fyn High. In the Sorgenfrei–Tornquist Zone to the east, where slow subsidence continued, marine sandy sediments were deposited in response to the uplift. Uplift of the central North Sea area was followed by fault-controlled subsidence accompanied by fluvial and floodplain deposition during Middle Jurassic time. On Bornholm, deposition of lacustrine muds, fluvial sands and peats dominated. The late Middle Jurassic saw a gradual shift to shallow marine deposition in the Danish Central Graben, the Danish Basin and Skåne, southern Sweden. During the Late Jurassic, open marine shelf conditions prevailed with deposition of clay-dominated sediments while shallow marine sands were deposited on platform areas. The Central Graben received sand by means of sediment gravity flows. The clay sediments in the Central Graben became increasingly rich in organic matter at the Jurassic–Cretaceous transition, whilst shallow marine coarse-grained deposits prograded basinwards in the Sorgenfrei– Tornquist Zone.


1989 ◽  
Vol 26 (5) ◽  
pp. 1001-1012 ◽  
Author(s):  
H. O. Cookenboo ◽  
R. M. Bustin

Three new formations of Late Jurassic and Early to mid-Cretaceous age are defined for a 2000 m thick section of Jura-Cretaceous rocks exposed in the north-central Bowser Basin. The Currier Formation (Oxfordian to Kimmeridgian or Tithonian) consists of 350–600 m of interbedded shales, siltstones, sandstones, coals, and carbonates. The McEvoy Formation (Barremian to as young as Albian) consists of 400–800 m of siltstones and shales with minor sandstones, thin coals, limestones, and conglomerates. The Devils Claw Formation (in part mid-Albian to Cenomanian) consists of 300–600 m of strata characterized by thick pebble and cobble conglomerates, with associated coarse sandstones and minor siltstones and shales.Two successive coarsening-upward sequences are identified in the study area. The first begins with Middle Jurassic marine shales of the Jackson unit grading upwards to coarser Upper Jurassic facies of the Currier Formation. The Currier Formation is conformably or unconformably overlain by siltstones and shales of the Lower Cretaceous McEvoy Formation, which forms the base of a second coarsening-upward sequence. Conglomerates appear with increasing frequency in the upper McEvoy and are the dominant lithology of the overlying Devils Claw Formation. The contact between the McEvoy and Devils Claw formations is gradational. The Devils Claw Formation forms the top of the second coarsening-upward sequence.The Currier Formation (Late Jurassic) is equivalent to the upper units of the Bowser Lake Group. The McEvoy and the Devils Claw formations (Barremian to Cenomanian) are coeval with the Skeena Group (Hauterivian? to Cenomanian). A probable unconformity separating the Upper Jurassic Currier Formation from the Lower Cretaceous McEvoy Formation correlates with a hiatus in the southern Bowser Basin and probably represents a regional unconformity.


Sign in / Sign up

Export Citation Format

Share Document