scholarly journals Guiding Paving Block Porous for Blind People

2020 ◽  
Vol 11 (1) ◽  
pp. 79-86
Author(s):  
Muhammad Isradi ◽  
Acep Hidayat ◽  
Joewono Prasetijo

AbstractPorous concrete is a simple form of lightweight concrete made by eliminating the use of fine aggregates (sand). That is a mixture of cement, water and coarse aggregate. Use of the guiding paving block porous for blind people is one of the efforts that will be made to overcome the inundation due to water spills from sufficiently high rainfall, providing comfort and safety for users so as not to slip easily due to slippery road surfaces, that will be used must have a measurable value of permeability and porosity to optimize the function of using porous concrete. Guiding paving block porous for blind people are very economical and have a great advantage in absorbing water so the surface is always dry, and can reduce accidents due to slippery roads. Another advantage is that the product is environmentally friendly with handmade, designed using a mixture of plastic bottle waste material can be made apart from the manufacturing process in various shapes and various colors. From the test results it has a strength of 10-15 mpa in the precast age of 28 days with a water absorption capability of up to 10L / m2.

2014 ◽  
Vol 554 ◽  
pp. 111-115 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md. Nor Hasanan ◽  
P.J. Ramadhansyah

The objective of the study is to investigate the potential of using Porous Concrete Paving Blocks (PCPB) as a part of paving surface. Laboratory tests were conducted to compare and examine the effect of particle sizes of coarse aggregate. Two coarse aggregate sizes were selected; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. The fine aggregate was eliminated from mixes. The water to cement ratio used was 0.35. Compressive strength and skid resistance tests were performed to evaluate the properties of PCPB. The test results indicated that there was a reduction in the strength when coarse aggregate at different size was used. Scanning electron microscopy showed that voids, poor bonding and lack of adhesion at the boundaries of the aggregate with cement paste contributing to the low PCPB strength. However, both PCPB specimens provide 30 % to 40 % increase in skid resistance compared to Concrete Paving Blocks (CPB).


Author(s):  
Suwendy Arifin Et.al

Pervious concrete or non-fine concrete is a simple form of lightweight concrete made by eliminating the use of fine aggregates. As a result of not using fine aggregate in pervious concrete, then created a cavity filled with air and water can be passed. This cavity resulted in reduced density of the concrete as well as the reduced amount of area that needs to be covered by cement paste, thereby reducing the compressive strength. To increase the compressive strength of pervious concrete, in this study will utilize waste material. The waste material is the cocnut shell ash and coconut shell to strengthen the coarse aggregate bonds, so it is expected to increase the compressive strength along with the increase in permeability. Thus, in this study will replace part of the coarse aggregate with coconut shell with percentage 0%, 2,5%, 5%, 7,5%, 10% and partially replace cement with coconut shell ash with percentage 0%, 2,5%, 5%, 7,5%


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3341
Author(s):  
Stefania Grzeszczyk ◽  
Grzegorz Janus

This paper presents the test results of the lightweight concrete properties obtained by adding expanded perlite (EP) to an RPC mix in quantities from 30% to 60% by volume of the concrete mix. It has been shown that in these cases it is possible to obtain concrete containing 30% by volume with density of approximately 1900 kg/m3 and the compressive strength > 70 MPa, with a very low water absorption value (3.3%), equal to the water absorption value of RPC without lightweight aggregate (3.3%). However, with the increased quantity of perlite (from 45% to 60%), the concrete density reduction is not observed, as the expanded perlite demonstrates very low resistance to crushing. With the increased amount of perlite, the longer periods of mixing time for all the mix components are required to obtain the homogeneous and fluid concrete mix, what causes grounding down EP. Therefore, using larger quantities of this aggregate in RPC is not recommended. The lightweight RPC shows very good freeze-thaw resistance in the presence of de-icing salt (the scaling mass is lower than 0.1 kg/m2). The above is explained by the compact microstructure of this concrete and the RPC mix location in open pores on the perlite aggregate surface, which consequently affects the strengthening of the aggregate-matrix contact without an interfacial transition zone (ITZ) visible. It has been demonstrated that pozzolanic activity of expanded perlite is much lower than the activity of silica fume and quartz powder, and its impact on increasing the RPC strength is minimal.


2014 ◽  
Vol 911 ◽  
pp. 433-437 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md Nor Hasanan ◽  
P.J. Ramadhansyah

Properties of Porous Concrete Paving Blocks (PCPB) were investigated in this study. Two groups of coarse aggregate sizes were performed; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. For mixture design, 100 % of coarse aggregate were used. However, fine aggregate was eliminated in this investigation. The density, water absorption, flakiness index and elongation index test were performed to determine the properties of the coarse aggregate used in this study. Compression test and skid resistance test were used to evaluate the performance of PCPB. The results show that PCPB containing coarse aggregate size 5 8 mm give high compressive strength compared to others PCPB specimen. In addition, both PCPB specimens give an in increasing in skid resistance approximately 30 % compared to Concrete Paving Blocks (CPB).


Author(s):  
Natalija Bede ◽  
Neira Torić Malić

In this paper, expanded polystyrene (EPS) lightweight concrete (LWC) was investigated. The mainaim was to design EPS LWC with the specified density of 1200 kg/m3 according to standard concretemix proportion. Mix proportion included total replacement of the conventional coarse aggregate bymaximum possible amount of EPS beads, which ensures concrete workability and prescribeddensity. The results demonstrated that exactly defined mixture-proportioning and casting procedureare required to achieve designed density. For designed EPS LWC mixture properties of freshlymixedconcrete and hardened concrete were analyzed. Based on test results it is concluded thatdesigned EPS LWC can be used for structural-insulating purpose such as floors and roofs.


2013 ◽  
Vol 753-755 ◽  
pp. 762-770 ◽  
Author(s):  
Xi Xi He ◽  
Tao Zhang

Solid recycled coarse aggregate concrete bricks were produced by QTY4-40 brick machine with strength grades of MU15-MU30. Recycled aggregate replacement rate was up to 100%. Water absorption and moisture content were tested. Two methods were taken to test the drying shrinkage. The impact of recycled aggregate replacement rate and curing period on the drying shrinkage rate, water absorption, moisture content, density was analyzed, and the relationship between them was presented. The results indicate that recycled aggregate can increase the shrinkage of solid concrete brick. The shrinkage of recycled solid concrete bricks' (fully substitute) is larger than ordinary concrete bricks' by 1.6-2 times. Water reducer is helpful to improve the water retention and decrease the shrinkage of brick. One of the test results of shrinkage got by the methods recommended in relevant specification is smaller.


2012 ◽  
Vol 178-181 ◽  
pp. 1321-1324 ◽  
Author(s):  
Wen Xue ◽  
Xiang Ping Han ◽  
Zhi Guo Xia ◽  
Qi Zheng

This paper studied the lime-fly ash bound macadam mixed with different proportions of lime fly-ash and aggregates which is often used in construction projects, analyzed the impacts of the aggregate content to the unconfined compressive strength, modulus of compressive resilience property with various lime content and is showed that dense skeleton lime-fly ash bound macadam reached the desirable strength property and had good effect on pavement performance Therefore, it is concluded that lime-fly ash bound macadam with desirable property, replacing fine aggregates is achievable, Test results show that coarse aggregate of lime fly-ash stabilized aggregate can form skeleton structure and has the advantage of high strength and other better material properties which can meet the requirements pavement.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


Lightweight concrete is the way to reduce the weight as well as deflection in concrete members without affecting its properties. Many of the researches are in progress to find a substitute for this lightweight material. In this project, we would like to take the naturally available fibre named sisal fibre and bamboo as partial replacement material. The influence of sisal fibres on the strength of concrete is taken as the main objective of this experimental study. The addition of natural fibre to the lightweight concrete will enhance the various strength parameters like flexural strength, compressive strength, and increase the ductile behaviour. In the present work, it is aimed to investigate the mechanical properties of lightweight concrete with a replacement of sisal fibre for cement and bamboo as a replacement in coarse aggregate in different percentages. The compressive strength, flexural strength, deflection of the beam is studied with consideration of M25 concrete specimens. Totally 36 number of 500 x 100 x 100mm flexural member cast and tested. It is recommended up to 5% replacement of coarse aggregate with bamboo and 5% addition of sisal fibres with cement provide at M25 grade of concrete gives the optimum increases of strength values. The test results indicated that the sisal fibres were effective in improving the strength of lightweight concrete.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012244
Author(s):  
Kuldeep Kumar ◽  
Manjeet Bansal ◽  
Rishav Garg ◽  
Rajni Garg

Abstract Porous concrete is an amalgamation of coarse aggregate, Portland cement, and water, which permits rainfall water to permeate through the surface and into the ground before it runs off. Porous concrete encompasses little or no fine aggregates and adequate cementitious fixative to coat the coarse aggregate while keeping the voids interconnected. IRC 44-2017 states that range of permeability for pervious concrete should be from 0.135 cm/second to 1.22 cm/second and array of compressive strength should be 5MPa - 25MPa. In this experimental study, two properties of no fine concrete namely compressive strength and porousness at the curing age of 7th & 28rd days has been targeted. Compressive strength and Infiltration tests were conducted on the pervious concrete of grade M10 and M15 by keeping variation of fine aggregates of 0% - 5%. We observed that fines aggregate help to rise the compressive strength of porous concrete but decrease the permeability. Thus, by careful optimization of the mix, pervious concrete can be obtained for suitable use in low strength load.


Sign in / Sign up

Export Citation Format

Share Document