scholarly journals Transference of Traditional Versus Complex Strength and Power Training to Sprint Performance

2014 ◽  
Vol 41 (1) ◽  
pp. 265-273 ◽  
Author(s):  
Irineu Loturco ◽  
Valmor Tricoli ◽  
Hamilton Roschel ◽  
Fabio Yuzo Nakamura ◽  
Cesar Cavinato Cal Abad ◽  
...  

AbstractThe purpose of this study was to determine the effects of two different strength-power training models on sprint performance. Forty-eight soldiers of the Brazilian brigade of special operations with at least one year of army training experience were divided into a control group (CG: n = 15, age: 20.2 ± 0.7 years, body height: 1.74 ± 0.06 m, and body mass: 66.7 ± 9.8 kg), a traditional training group (TT: n = 18, age: 20.1 ± 0.7 years, body height: 1.71 ± 0.05 m, and body mass: 64.2 ± 4.7 kg), and a complex training group (CT: n = 15, age: 20.3 ± 0.8 years, body height: 1.71 ± 0.07 m; and body mass: 64.0 ± 8.8 kg). Maximum strength (25% and 26%), CMJ height (36% and 39%), mean power (30% and 35%) and mean propulsive power (22% and 28%) in the loaded jump squat exercise, and 20-m sprint speed (16% and 14%) increased significantly (p<0.05) following the TT and CT, respectively. However, the transfer effect coefficients (TEC) of strength and power performances to 20-m sprint performance following the TT were greater than the CT throughout the 9-week training period. Our data suggest that TT is more effective than CT to improve sprint performance in moderately trained subjects.

2018 ◽  
Vol 63 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Michał Górski ◽  
Michał Starczewski ◽  
Anna Pastuszak ◽  
Joanna Mazur-Różycka ◽  
Jan Gajewski ◽  
...  

Abstract The aim of the study was to investigate changes of strength and power of the lower extremities in adolescent handball players during a two-year training cycle. Thirty-one male handball players (age 16.0 ± 0.2 years, body mass 81.4 ± 9.7 kg, body height 188.2 ± 6.4 cm) took part in this study. All tests were conducted three times at the beginning of a one-year training programme. The maximum joint torque (JT) of flexors and extensors of the elbow, shoulder, hip, knee and trunk was measured under static conditions. Power of lower extremities was assessed with a repeated sprint ability (RSA) test on a cycloergometer and jump tests: akimbo counter-movement jump (ACMJ), counter-movement jump (CMJ) and spike jump tests on a force plate. Peak power (PP) increased from 914.8 ± 93.9 to 970.0 ± 89.2 and 1037.8 ± 114.4 W (p < 0.05) following the RSA test results. Maximum power increased significantly (p < 0.05) in ACMJ (1951.9 ± 359.7 to 2141.9 ± 378.5 and 2268.5 ± 395.9 W) and CMJ tests (2646.3 ± 415.6 to 2831.2 ± 510.8 and 3064.6 ± 444.5 W). Although significant differences in JT (p < 0.05) were observed during the two year period, their values related to body mass for the lower right extremity, sum of the trunk and sum of all muscle groups increased significantly between the first and the second measurement (from 13.7 ± 1.8 to 14.58 ± 1.99 N·m·kg-1, from 9.3 ± 1.5 to 10.39 ± 2.16 N·m·kg-1, from 43.4 ± 5.2 to 46.31 ± 6.83 N·m·kg-1, respectively). The main finding of the study is that PP in the RSA test and maximal power in the ACMJ and CMJ increase in relation to training experience and age in the group of youth handball players.


Sports ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 104
Author(s):  
Konstantina Karagianni ◽  
Olyvia Donti ◽  
Christos Katsikas ◽  
Gregory C. Bogdanis

This study examined the effects of a short-duration supplementary strength–power training program on neuromuscular performance and sport-specific skills in adolescent athletes. Twenty-three female “Gymnastics for All” athletes, aged 13 ± 2 years, were divided into a training group (TG, n = 12) and a control group (CG, n = 11). Both groups underwent a test battery before and after 10 weeks of intervention. TG completed, in addition to gymnastics training, a supplementary 7–9 min program that included two rounds of strength and power exercises for arms, torso, and legs, executed in a circuit fashion with 1 min rest between rounds, three times per week. Initially, six exercises were performed (15 s work–15 s rest), while the number of exercises was decreased to four and the duration of each exercise was increased to 30 s (30 s rest) after the fifth week. TG improved countermovement jump performance with one leg (11.5% ± 10.4%, p = 0.002) and two legs (8.2% ± 8.8%, p = 0.004), drop jump performance (14.4% ± 12.6%, p = 0.038), single-leg jumping agility (13.6% ± 5.2%, p = 0.001), and sport-specific performance (8.8% ± 7.4%, p = 0.004), but not 10 m sprint performance (2.4% ± 6.6%, p = 0.709). No change was observed in the CG (p = 0.41 to 0.97). The results of this study indicated that this supplementary strength–power program performed for 7–9 min improves neuromuscular and sport-specific performance after 10 weeks of training.


2012 ◽  
Vol 32 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Jerzy Sadowski ◽  
Andrzej Mastalerz ◽  
Wilhelm Gromisz ◽  
Tomasz Niźnikowski

Effectiveness of the Power Dry-Land Training Programmes in Youth Swimmers The aim of the study was to evaluate the effects of the dry-land power training on swimming force, swimming performance and strength in youth swimmers. Twenty six male swimmers, free from injuries and training regularly at least 6 times a week, were enrolled in the study and randomly assigned to one of two groups: experimental (n=14, mean age 14.0 ± 0.5 yrs, mean height 1.67±0.08 m and mean body mass 55.71 ±9.55 kg) and control (n=12, mean age 14.1 ± 0.5 yrs, mean height 1.61±0.11 m and mean body mass 49.07 ±8.25 kg). The experimental group took part in a combined swimming and dry-land power training. The control group took part in swimming training only. The training programmes in water included a dominant aerobic work in front crawl. In this research the experimental group tended to present slightly greater improvements in sprint performance. However, the stroke frequency insignificantly decreased (-4.30%, p>0.05) in the experimental group and increased (6.28%, p>0.05) in the control group. The distance per stroke insignificantly increased in the experimental group (5.98%, p>0.05) and insignificantly decreased in the control group (-5.36%, p>0.05). A significant improvement of tethered swimming force for the experimental group (9.64%, p<0.02) was found, whereas the increase was not statistically significant in the control group (2.86%, p>0.05). The main data cannot clearly state that power training allowed an enhancement in swimming performance, although a tendency to improve swimming performance in tethered swimming was noticed.


2018 ◽  
Vol 2 (73) ◽  
Author(s):  
Marina Jagiello ◽  
Wladislaw Jagiello

Contemporary anthropological research confirms the fact that body composition is one of the basic elements differentiating athletes from persons not practising sport. Among athletes representing various branches of sport there are also significant differences in their body composition. Internal proportions of the body composition of an athlete, or a selected group of athletes, is an especially important yet little researched issue of sports anthropology. This problem is still topical in sports games, especially in tennis. Therefore, the aim of the study was to determine internal proportions of the body composition of female tennis players from the Polish national team in comparison to persons who do not practice sport professionally. The study involved female athletes of the Polish national tennis team (n = 10). The study was carried out in a training camp from 28 September to 9 October 2002 in Zakopane — Centre of Sports Preparation. Athletes’ age was 16—20 (18.1 ± 1.4) years, and the training experience 8—12 years (10.5 ± 1.8). The mean body height for the group members was 171.9 ± 6.7 cm and the mean body mass 59.7 ± 6.3 kg. The results of research by Piechaczek et al. (1996) constituted the reference point for the results of measurements of Polish tennis representatives. The authors studied 153 female students of Warsaw Technical University aged 20.2 ± 1.09 years. They were randomly chosen students of the first and the second year of various departments at this university. The mean body height of the students was 166.2 ± 6.2 cm and the mean body mass 57.4 ± 7.72 kg. Anthropometric measurements were taken using standard instruments (Drozdowski, 1998). The analysis involved 11 somatic features which determined three so-called factors of body composition: length (m1), stoutness (m2) and obesity (m3). The assessment of proportions of the body composition was made by means of Perkal’s natural indices (1953) with Milicerowa’s modifications (1956). We determined the following: composition factors (m), index of total body size (M), internal proportions of the body composition, evenness of composition, the code of internal proportions; also the assessment of internal proportions of the body composition within each of the factors.Taking into consideration the mean values of the studied somatic features in the control group and the comparative group we found differences in their body composition. The representatives of the Polish national tennis team showed substantially longer upper and lower limbs, and the body height was greater. They also had much greater forearm perimeter and shorter pelvic width. As to the total body size, the tennis players slightly exceeded the students (M = 0.24). The total body size (M) resulted from high values of length features (m1 = 1.01), low ones of stoutness (m2 = –0.39) and medium ones of obesity (m3 = 0.1). The value of the intragroup variability index (harmony of composition) amounted to 1.4 and the code of internal proportions of tennis players’ body composition — to 6—2—4. The proportions of internal features of the stoutness index (natural indices of features within a factor) showed the advantage of the forearm perimeter (1.62) and elbow width (0.36). The knee width (–1.30) and pelvic width (–0.60) were disproportionate to the total value of this factor. The input of features characterizing the length factor was relatively proportional.Keywords: tennis, training, body composition, internal proportions.


2017 ◽  
Vol 31 (3) ◽  
pp. 5-15
Author(s):  
Agata Świst ◽  
Krzysztof Graff ◽  
Dorota Chałubińska ◽  
Aleksandra Zielińska ◽  
Anna Łukaszewska

Abstract Introduction:According to the latest UNICEF report, Polish children put on weight at the highest pacein Europe. The number of overweight children has doubled in the last decade. The aim of the work was to assess the effects of kinesiotherapy implemented during a 3-week rehabilitationcamp on changes in motor skills parameters measured on the Leonardo dynamometric platform (Novotec Medical) and on body mass in patients with simple obesity. Materialand methods:The study group included 32 children and youth aged 7-16 with simple obesity who underwent an exercise programme during a 3-week rehabilitation camp. The subjects were examined twice, i.e. at the beginning and at the end of the camp. The control group consisted of 70 healthy children within the same age range who were examined once. Body mass and body height were measured and the BMI was calculated (taking into account centile charts) for all the study participants. Motor skills were assessed on the basis of avertical jump performed on the Leonardo GRFP (GroundReaction Force Platform). The following data were registered: jump velocity, maximum jump height, strength, power, power with reference to body mass and the Esslinger Fitness Index (EFI). Daily kinesiotherapy included exercises in the form of circuit training and water exercises. All the patients participated in meetings with a dietician and a clinical psychologist. Results:Statistically significant reduction in body mass after a 3-week rehabilitation camp was noted in 27 patients with simple obesity (84.1%) (p<0.05). Motor parameters did not improve significantly. Conclusions:Regular physical activity resulted in weight loss only. However, physical activity did not bring about positive changes in motor parameters.


2020 ◽  
Vol 4 (02) ◽  
pp. E32-E38
Author(s):  
Nicolay Stien ◽  
Morten Strate ◽  
Vidar Andersen ◽  
Atle Hole Saeterbakken

AbstractThe aim of this study was to examine the effects of overspeed or overload plyometric training on jump height and lifting velocity in resistance trained females without plyometric training experience. Fifty-six participants (age: 21.2±1.7 years; body mass: 65.1±8.2 kg; height: 168.0±5.9 cm) were randomly allocated to either an overspeed (n=18), overload (n=18), or passive control (n=16) group. The two training groups completed 18.7±1.7 sessions consisting of three different plyometric exercises with overspeed or overload over eight weeks. Apart from the external loading, the two training modalities were identical. Following the training period, the changes in the recorded variables were not significantly different from those in the control group, nor did the training groups differ from each other. The training groups improved peak and average lifting velocity in the 40 and 60% of body mass loading conditions (9.50–33.37%, p=<0.001–0.038), whereas only the average lifting velocity improved in the 80% of body mass loading condition (OS: 14.47%, p<0.001 and OL: 23.13%, p<0.001). No significant changes occurred in the control group (9.18–13.55%, P=0.062–0.980). Overspeed and overload plyometric training may be viable methods for improving lifting velocity, but not squat jump height, in a population without plyometric training experience.


2017 ◽  
Vol 1 (04) ◽  
pp. E147-E154 ◽  
Author(s):  
Yohei Takai ◽  
Miyuki Nakatani ◽  
Takuya Akamine ◽  
Katsuyuki Shiokawa ◽  
Daisuke Komori ◽  
...  

AbstractThe present study aimed to elucidate the effect of core training on trunk flexor musculature in athletes. Twenty-eight collegiate male soccer players were randomly assigned to three groups: a training group that performed core exercises with wheeled platforms (WP), a training group that performed body mass-based core exercise (BME), and a control group that did not perform core exercise training (CON). WP and BME trained twice a week for 10 weeks. The WP performed 8–14 exercises with wheeled platforms. BME conducted four core exercises to failure. Before and after the intervention, trunk segment lean body mass (LBM) was measured using a whole-body dual-energy X-ray absorptiometry scanner. Muscle thicknesses (MTs) of the rectus abdominis (RA), external oblique, internal oblique (IO), and transverse abdominis were determined with an ultrasound apparatus. No significant changes for any measured variables were found in CON. In both training groups, the trunk segment LBM was significantly increased through the intervention. While MT for IO significantly increased in the two training groups, significant increases in MT for RA were found in only WP. For collegiate soccer players, the core training programs adopted here can be effective in increasing trunk segment LBM, but the effectiveness on the trunk flexor muscularity differs between the two training modalities.


2013 ◽  
Vol 39 (1) ◽  
pp. 147-156 ◽  
Author(s):  
Christopher J. Sole ◽  
Gavin L. Moir ◽  
Shala E. Davis ◽  
Chad A. Witmer

Abstract The purpose of this study was to determine the acute effects of heavy resistance exercise on agility performance in court-sport athletes. Five men (age: 20.6 ± 1.9 years; body mass: 79.36 ± 11.74 kg; body height: 1.93 ± 0.09 m) and five women (age 21.2 ± 2.7 years; body mass: 65.8 ± 10.18 kg; body height 1.77 ± 0.08 m) volunteered to participate in the present study. All subjects were NCAA Division II athletes who currently participated in tennis or basketball and all had previous resistance training experience of at least one year. In a counterbalanced design, agility performance during a 10 m shuttle test was assessed following either a dynamic warm-up (DW) or heavy resistance warm-up (HRW) protocol. The HRW protocol consisted of three sets of squats at 50, 60, and 90% of 1-RM. Agility performance was captured using an eight camera motion analysis system and the mechanical variables of stride length, stride frequency, stance time, flight time, average ground reaction force, as well as agility time were recorded. No significant differences were reported for the HRW and DW protocols for any of the mechanical variables (p>0.05), although there was a trend towards the HRW protocol producing faster agility times compared to the control protocol (p = 0.074). Based on the trend towards a significant effect, as well as individual results it is possible that HRW protocols could be used as an acute method to improve agility performance in some court-sport athletes.


Author(s):  
Mikael Derakhti ◽  
Domen Bremec ◽  
Tim Kambič ◽  
Lasse Ten Siethoff ◽  
Niklas Psilander

Purpose: This study compared the effects of heavy resisted sprint training (RST) versus unresisted sprint training (UST) on sprint performance among adolescent soccer players. Methods: Twenty-four male soccer players (age: 15.7 [0.5] y; body height: 175.7 [9.4] cm; body mass: 62.5 [9.2] kg) were randomly assigned to the RST group (n = 8), the UST group (n = 10), or the control group (n = 6). The UST group performed 8 × 20 m unresisted sprints twice weekly for 4 weeks, whereas the RST group performed 5 × 20-m heavy resisted sprints with a resistance set to maximize the horizontal power output. The control group performed only ordinary soccer training and match play. Magnitude-based decision and linear regression were used to analyze the data. Results: The RST group improved sprint performances with moderate to large effect sizes (0.76–1.41) across all distances, both within and between groups (>92% beneficial effect likelihood). Conversely, there were no clear improvements in the UST and control groups. The RST evoked the largest improvements over short distances (6%–8%) and was strongly associated with increased maximum horizontal force capacities (r = .9). Players with a preintervention deficit in force capacity appeared to benefit the most from RST. Conclusions: Four weeks of heavy RST led to superior improvements in short-sprint performance compared with UST among adolescent soccer players. Heavy RST, using a load individually selected to maximize horizontal power, is therefore highly recommended as a method to improve sprint acceleration in youth athletes.


2017 ◽  
Vol 12 (6) ◽  
pp. 840-844 ◽  
Author(s):  
Jean-Benoît Morin ◽  
George Petrakos ◽  
Pedro Jiménez-Reyes ◽  
Scott R. Brown ◽  
Pierre Samozino ◽  
...  

Background:Sprint running acceleration is a key feature of physical performance in team sports, and recent literature shows that the ability to generate large magnitudes of horizontal ground-reaction force and mechanical effectiveness of force application are paramount. The authors tested the hypothesis that very-heavy loaded sled sprint training would induce an improvement in horizontal-force production, via an increased effectiveness of application.Methods:Training-induced changes in sprint performance and mechanical outputs were computed using a field method based on velocity–time data, before and after an 8-wk protocol (16 sessions of 10- × 20-m sprints). Sixteen male amateur soccer players were assigned to either a very-heavy sled (80% body mass sled load) or a control group (unresisted sprints).Results:The main outcome of this pilot study is that very-heavy sled-resisted sprint training, using much greater loads than traditionally recommended, clearly increased maximal horizontal-force production compared with standard unloaded sprint training (effect size of 0.80 vs 0.20 for controls, unclear between-groups difference) and mechanical effectiveness (ie, more horizontally applied force; effect size of 0.95 vs –0.11, moderate between-groups difference). In addition, 5-m and 20-m sprint performance improvements were moderate and small for the very-heavy sled group and small and trivial for the control group, respectively.Practical Applications:This brief report highlights the usefulness of very-heavy sled (80% body mass) training, which may suggest value for practical improvement of mechanical effectiveness and maximal horizontal-force capabilities in soccer players and other team-sport athletes.Results:This study may encourage further research to confirm the usefulness of very-heavy sled in this context.


Sign in / Sign up

Export Citation Format

Share Document