scholarly journals A Comparison Between the Squat and the Deadlift for Lower Body Strength and Power Training

2020 ◽  
Vol 73 (1) ◽  
pp. 145-152
Author(s):  
Federico Nigro ◽  
Sandro Bartolomei

AbstractThe aim of this study was to compare the effects of two resistance training programs including either a deadlift or a parallel squat on lower body maximal strength and power in resistance trained males. Twenty-five resistance trained men were randomly assigned to a deadlift group (DE; n = 14; age = 24.3 ± 4.1 y; body mass = 84.8 ± 14.2 kg; body height = 180.3 ± 6.8 cm) or to a squat group (SQ; n = 11; age = 22.3 ± 1.6 y; body mass = 83.0 ± 13.6 kg; body height 179.9 ± 6.1 cm). Both groups trained 3 times per week for 6 weeks. The deadlift and the squat were the only lower body maximal strength exercises performed by DE and SQ groups, respectively, while both training programs included jumps. A significantly (p = 0.017) greater increase in deadlift 1RM was observed in the DE compared to the SQ group, while the SQ group obtained a significantly (p = 0.049) greater increase in squat 1RM. A significant increase in jump performance (p = 0.010), without significant interactions between groups (p = 0.552), was observed in both groups. Three participants of the DE group developed lower back pain and were excluded from the study. Results indicate that both the squat and the deadlift can result in similar improvement in lower body maximal strength and jump performance and can be successfully included in strength training programs. The incidence of back pain in the DE group may suggest a marked stress of this exercise on the lower back. Proper technique should be used to minimize the risk of injury, especially when the deadlift is performed.

2009 ◽  
Vol 21 (1) ◽  
pp. 34-46 ◽  
Author(s):  
James L. Nuzzo ◽  
Michael J. Cavill ◽  
N. Travis Triplett ◽  
Jeffrey M. McBride

The primary purpose of this investigation was to provide a descriptive analysis of lower-body strength and vertical jump performance in overweight male (n = 8) and female (n = 13) adolescents. Maximal strength was tested in the leg press and isometric squat. Kinetic and kinematic variables were assessed in vertical jumps at various loads. When compared with females, males demonstrated significantly greater (p ≤ .05) absolute maximal strength in the leg press. However, when maximal strength was expressed relative to body mass, no significant difference was observed. There were no significant differences between males and females in vertical jump performance at body mass.


Author(s):  
María Teresa Martínez-Romero ◽  
Antonio Cejudo ◽  
Pilar Sainz de Baranda

Puberty is a vulnerable period for musculoskeletal disorders due to the existence of a wide inter-individual variation in growth and development. The main objective of the present study was to describe the prevalence of back pain (BP) in the past year and month in school-aged children according to sex, age, maturity status, body mass index (BMI) and pain characteristics. This study involved 513 students aged between 9 and 16 years. Anthropometric measures were recorded to calculate the maturity stage of the students using a regression equation comprising measures for age, body mass, body height, sitting height and leg length. An ad hoc questionnaire composed of eight questions was used to describe BP prevalence in school-aged children. The results showed that the prevalence of BP in school-aged children was observed in 35.1% over the last year (45% boys and 55% girls), and 17.3% (40.4% boys and 59.6% girls, with an association found between female sex and BP) in the last month. The prevalence of back pain in the past year and month was higher the older the students were, or the more pubertal development they had experienced. The prevalence of BP in the last year was also higher in those with overweight or obesity. After adjustment for sex, there was an association between BP and older age and higher BMI in boys and an association between BP and higher pubertal development in girls. In summary, the present study showed that the prevalence of BP was related to the maturity stage and weight of the participants, with different prevalence patterns found according to sex.


2015 ◽  
Vol 45 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Petr Kutáč ◽  
Martin Sigmund

Abstract The goals of this study were to evaluate the basic morphological variables of contemporary elite ice hockey players, compare the parameters of players in the top Russian ice hockey league (KHL) with those of the top Czech ice hockey league (ELH), and to evaluate the parameters of players according to their position in the game. The research participants included 30 KHL players (mean age: 27.1 ± 5.1 years) and 25 ELH players (mean age: 26.4 ± 5.8 years). We determined body height, body mass, and body composition (body fat, fat-free mass, segmental fat analysis). All measurements were performed at the end of preseason training. The KHL players had the following anthropometric characteristics: body height 182.97 ± 5.61 cm (forward) and 185.72 ± 3.57 cm (defenseman), body mass 89.70 ± 5.28 kg (forward) and 92.52 ± 4.01 kg (defenseman), body fat 10.76 ± 0.63 kg (forward) and 11.10 ± 0.48 kg (defenseman), fatfree mass 78.94 ± 4.65 kg (forward) and 81.42 ± 3.52 kg (defenseman). The values for ELH players were as follows: body height 182.06 ± 5.93 cm (forward) and 185.88 ± 7.13 cm (defenseman), body mass 88.47 ± 7.06 kg (forward) and 89.36 ± 10.91 kg (defenseman), body fat 12.57 ± 2.89 kg (forward) and 11.91 ± 3.10 kg (defenseman), fat-free mass 75.93 ± 6.54 kg (forward) and 77.46 ± 7.89 kg (defenseman). The results indicate that it is beneficial to ice hockey players to have increased body mass and lower body fat, which leads to higher muscle mass, thus enabling a player to perform at the highest level and meet the specific challenges of the game.


2018 ◽  
Vol 62 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Roland van den Tillaar ◽  
Atle Hole Saeterbakken

AbstractThe purpose of this study was to compare core muscle activation during a prone bridge (plank) until failure and 6-RM back squats. Twelve resistance-trained males (age 23.5 ± 2.6 years, body mass 87.8 ± 21.3 kg, body height 1.81 ± 0.08 m) participated in this study. Total exercise time and EMG activity of the rectus abdominis, external abdominal oblique and erector spinae were measured during 6-RM back squats and a prone bridge with a weight of 20% of participants’ body mass on their lower back. The main findings showed non-significant differences between the exercises in the rectus abdominis or external oblique, but greater erector spinae activation in squatting. Furthermore, in contrast to the prone bridge, the erector spinae and rectus abdominis demonstrated increasing muscle activation throughout the repetitions while squatting, whereas the prone bride demonstrated increasing external oblique activation between the beginning and the middle of the set. It was concluded that since squatting resulted in greater erector spine activation, but similar rectus abdominis and oblique external activation as the prone bridge, high-intensity squats rather than isometric low intensity core exercises for athletes would be recommended.


Author(s):  
Miloš Stojković ◽  
Katie M. Heinrich ◽  
Aleksandar Čvorović ◽  
Velimir Jeknić ◽  
Gianpiero Greco ◽  
...  

The first aim of this study was to compare body mass index (BMI) (indirect method) classification with the body fat percent (PBF) (direct method) and to determine how BMI classifies subjects with different levels of skeletal muscle mass percent (PSMM). The second aim was to determine the prevalence of overweight and obesity status among police trainees (PTs). A total of 103 male PTs participated in this research: age = 21.46 ± 0.64 years, body mass (BM) = 75.97 ± 8.10 kg, body height (BH) = 174.07 ± 6.31 cm, BMI = 25.05 ± 2.12 kg/m2. The InBody 370 multichannel bioelectrical impedance analysis (BIA) measured body composition. Study results indicated that muscular PTs could be misclassified as overweight and that PBF identified more subjects as obese. Namely, three PTs were obese according to BMI, while 13 were obese according to PBF. The information provided by this research could be used to help professionals understand the importance of measuring body composition, and the inaccuracies in BMI classification. In conclusion, whenever possible PSMM and PBF should replace the utilization of BMI to screen overweight and obesity in PTs. Agencies may think of using BIA as non-invasive, quick and inexpensive measurement tool.


Author(s):  
Nurka Pranjic ◽  
Selma Azabagic

Background Children often suffer the nonspecific musculosceletal pain as reported in literature. Aim To determine relationship between body weights with development of musculoskeletal pain and to determine whether growing in body height is associated with musculoskeletal pain in schoolchildren. Subjects/ Methods A prospective longitudinal study included 1315 school children aged 7-14 years (652 boys and 663 girls) and was performed in 13 elementary schools in B&H. Child body height and body weight were measured. The survey of perception of musculoskeletal pain in different body regions of subjects was conducted by adjusted Nordic Musculosceletal Questionnaire (NMQ). Results The highest prevalence of an overweight and obesity in the 10th year 35.7% and the lowest frequency 17.8% in the 14th year was. In the age 14th obesity was’nt found. Boys have more prevalence of overweight. Using logistic regression model, we found that school children with normal BMI were protected with increased body height of acute lower back pain (β= -0.089, 95%CI, -9.730- -0.023, P< 0.049), and increased body height was protector of obese school children of acute upper back pain (β= -0.356, 95%CI, -14.077- -3.878, P< 0.001) and chronic lower back pain (β= -0.356, 95%CI, -14.077- -3.878, P< 0.001). Conclusion Schoolchildren with normal weight more often have had musculosceletal pain than those with overweight or obesity. This can be associated with intense physical growth period in height, especially. The assumption is that the increase in height changes the relationship between excessive BMI and musculoskeletal pain in children of school age.


2013 ◽  
Vol 178 (4) ◽  
pp. 603-609 ◽  
Author(s):  
O. Hershkovich ◽  
A. Friedlander ◽  
B. Gordon ◽  
H. Arzi ◽  
E. Derazne ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9208
Author(s):  
Shiqi Thng ◽  
Simon Pearson ◽  
Evelyne Rathbone ◽  
Justin W.L. Keogh

Background Depending on the stroke and distances of the events, swim starts have been estimated to account for 0.8% to 26.1% of the overall race time, with the latter representing the percentage in a 50 m sprint front crawl event (Cossor & Mason, 2001). However, it is still somewhat unclear what are the key physiological characteristics underpinning swim start performance. The primary aim of this study was to develop a multiple regression model to determine key lower body force-time predictors using the squat jump for swim start performance as assessed by time to 5 m and 15 m in national and international level swimmers. A secondary aim was to determine if any differences exist between males and females in jump performance predictors for swim start performance. Methods A total of 38 males (age 21 ±  3.1 years, height 1.83 ±  0.08 m, body mass 76.7 ±  10.2 kg) and 34 females (age 20.1 ±  3.2 years, height 1.73 ±  0.06 m, body mass 64.8 ±  8.4 kg) who had competed at either an elite (n = 31) or national level (n = 41) participated in this study. All tests were performed on the same day, with participants performing three bodyweight squat jumps on a force platform, followed by three swim starts using their main swimming stroke. Swim start performance was quantified via time to 5 m and 15 m using an instrumented starting block. Results Stepwise multiple linear regression with quadratic fitting identified concentric impulse and concentric impulse2 as statistically significant predictors for time to 5 m (R2 = 0.659) in males. With time to 15 m, concentric impulse, age and concentric impulse2 were statistically significant predictors for males (R2 = 0.807). A minimum concentric impulse of 200–230 N.s appears required for faster times to 5 m and 15 m, with any additional impulse production not being associated with a reduction in swim start times for most male swimmers. Concentric impulse, Reactive strength index modified and concentric mean power were identified as statistically significant predictors for female swimmers to time to 5 m (R2 = 0.689). Variables that were statistically significant predictors of time to 15 m in females were concentric impulse, body mass, concentric rate of power development and Reactive strength index modified (R2 = 0.841). Discussion The results of this study highlight the importance of lower body power and strength for swim start performance, although being able to produce greater than 200 or 230 N.s concentric impulse in squat jump did not necessarily increase swim start performance over 5 m and 15 m, respectively. Swimmers who can already generate greater levels of concentric impulse may benefit more from improving their rate of force development and/or technical aspects of the swim start performance. The sex-related differences in key force-time predictors suggest that male and female swimmers may require individualised strength and conditioning programs and regular monitoring of performance.


Sign in / Sign up

Export Citation Format

Share Document