scholarly journals The prediction of swim start performance based on squat jump force-time characteristics

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9208
Author(s):  
Shiqi Thng ◽  
Simon Pearson ◽  
Evelyne Rathbone ◽  
Justin W.L. Keogh

Background Depending on the stroke and distances of the events, swim starts have been estimated to account for 0.8% to 26.1% of the overall race time, with the latter representing the percentage in a 50 m sprint front crawl event (Cossor & Mason, 2001). However, it is still somewhat unclear what are the key physiological characteristics underpinning swim start performance. The primary aim of this study was to develop a multiple regression model to determine key lower body force-time predictors using the squat jump for swim start performance as assessed by time to 5 m and 15 m in national and international level swimmers. A secondary aim was to determine if any differences exist between males and females in jump performance predictors for swim start performance. Methods A total of 38 males (age 21 ±  3.1 years, height 1.83 ±  0.08 m, body mass 76.7 ±  10.2 kg) and 34 females (age 20.1 ±  3.2 years, height 1.73 ±  0.06 m, body mass 64.8 ±  8.4 kg) who had competed at either an elite (n = 31) or national level (n = 41) participated in this study. All tests were performed on the same day, with participants performing three bodyweight squat jumps on a force platform, followed by three swim starts using their main swimming stroke. Swim start performance was quantified via time to 5 m and 15 m using an instrumented starting block. Results Stepwise multiple linear regression with quadratic fitting identified concentric impulse and concentric impulse2 as statistically significant predictors for time to 5 m (R2 = 0.659) in males. With time to 15 m, concentric impulse, age and concentric impulse2 were statistically significant predictors for males (R2 = 0.807). A minimum concentric impulse of 200–230 N.s appears required for faster times to 5 m and 15 m, with any additional impulse production not being associated with a reduction in swim start times for most male swimmers. Concentric impulse, Reactive strength index modified and concentric mean power were identified as statistically significant predictors for female swimmers to time to 5 m (R2 = 0.689). Variables that were statistically significant predictors of time to 15 m in females were concentric impulse, body mass, concentric rate of power development and Reactive strength index modified (R2 = 0.841). Discussion The results of this study highlight the importance of lower body power and strength for swim start performance, although being able to produce greater than 200 or 230 N.s concentric impulse in squat jump did not necessarily increase swim start performance over 5 m and 15 m, respectively. Swimmers who can already generate greater levels of concentric impulse may benefit more from improving their rate of force development and/or technical aspects of the swim start performance. The sex-related differences in key force-time predictors suggest that male and female swimmers may require individualised strength and conditioning programs and regular monitoring of performance.

Author(s):  
Michal Krzysztofik ◽  
Rafal Kalinowski ◽  
Robert Trybulski ◽  
Aleksandra Filip-Stachnik ◽  
Petr Stastny

Although velocity control in resistance training is widely studied, its utilization in eliciting post-activation performance enhancement (PAPE) responses receives little attention. Therefore, this study aimed to evaluate the effectiveness of heavy-loaded barbell squats (BS) with velocity loss control conditioning activity (CA) on PAPE in subsequent countermovement jump (CMJ) performance. Sixteen resistance-trained female volleyball players participated in this study (age: 24 ± 5 yrs.; body mass: 63.5 ± 5.2 kg; height: 170 ± 6 cm; relative BS one-repetition maximum (1RM): 1.45 ± 0.19 kg/body mass). Each participant performed two different conditions: a set of the BS at 80% 1 RM with repetitions performed until a mean velocity loss of 10% as the CA or a control condition without CA (CNTRL). To assess changes in jump height (JH) and relative mean power output (MP), the CMJ was performed 5 min before and throughout the 10 min after the CA. The two-way analysis of variance with repeated measures showed a significant main effect of condition (p = 0.008; η2 = 0.387) and time (p < 0.0001; η2 = 0.257) for JH. The post hoc test showed a significant decrease in the 10th min in comparison to the value from baseline (p < 0.006) for the CNTRL condition. For the MP, a significant interaction (p = 0.045; η2 = 0.138) was found. The post hoc test showed a significant decrease in the 10th min in comparison to the values from baseline (p < 0.006) for the CNTRL condition. No significant differences were found between all of the time points and the baseline value for the CA condition. The CA used in the current study fails to enhance subsequent countermovement jump performance in female volleyball players. However, the individual analysis showed that 9 out of the 16 participants (56%) responded positively to the applied CA, suggesting that the PAPE effect may be individually dependent and should be carefully verified before implementation in a training program.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10937
Author(s):  
Shiqi Thng ◽  
Simon Pearson ◽  
Justin W.L. Keogh

Background The block phase in the swimming start requires a quick reaction to the starting signal and a large take-off velocity that is primarily horizontal in direction. Due to the principle of specificity of training, there is a potential benefit of performing a greater proportion of horizontal force production exercises in a swimmers’ dry-land resistance training sessions. Therefore, the purpose of this pilot study was to provide an insight into the effects of a horizontal- (HF) vs vertical-force (VF) training intervention on swim start performance. Methods Eleven competitive swimmers (six males (age 20.9 ± 1.8 years, body mass 77.3 ± 9.7 kg, height 1.78 ± 0.05 m) and five females (age 21.4 ± 2.0 years, body mass 67.5 ± 7.4 kg, height 1.69 ± 0.05 m)) completed 2 weekly sessions of either a horizontal- or vertical-force focused resistance training programme for 8 weeks. Squat jump force-time characteristics and swim start kinetic and kinematic parameters were collected pre- and post-intervention. Results Across the study duration, the swimmers completed an average of nine swimming sessions per week with an average weekly swim volume of 45.5 ± 17.7 km (HF group) and 53 ± 20.0 km (VF group), but little practice of the swim start per week (n = 9). Within-group analyses indicated a significant increase in predicted one repetition maximum (1RM) hip thrust strength in the HF group, as well as significant increases in grab resultant peak force but reductions in resultant peak force of the block phase for the VF group. No significant between-group differences in predicted 1RM hip thrust and back squat strength, squat jump force-time and swim start performance measures were observed after 8 weeks of training. Significant correlations in the change scores of five block kinetic variables to time to 5 m were observed, whereby increased block kinetic outputs were associated with a reduced time to 5 m. This may be indicative of individual responses to the different training programmes. Discussion The results of this current study have been unable to determine whether a horizontal- or vertical-force training programme enhances swim start performance after an 8-week training intervention. Some reasons for the lack of within and between group effects may reflect the large volume of concurrent training and the relative lack of any deliberate practice of the swim start. Larger samples and longer training duration may be required to determine whether significant differences occur between these training approaches. Such research should also look to investigate how a reduction in the concurrent training loads and/or an increase in the deliberate practice of the swim start may influence the potential changes in swim start performance.


2021 ◽  
pp. 1-10
Author(s):  
Alex Ojeda-Aravena ◽  
Tomás Herrera-Valenzuela ◽  
Pablo Valdés-Badilla ◽  
Eduardo Baez-San Martín ◽  
José Zapata-Bastías ◽  
...  

BACKGROUND: Repeat high-intensity intermittent efforts is a taekwondo-specific ability but the influence of aerobic capacity and dynamic strength characteristics on this ability has received relatively little attention in the literature. OBJECTIVE: To examine the relationship between specific high-intensity intermittent efforts with aerobic capacity and slow stretch-shortening cycle utilization in taekwondo athletes. METHODS: Nineteen taekwondo male athletes were assessed by squat jump (SJ), countermovement jump (CMJ), 20-meter shuttle run (20MSR), and frequency speed of kick test multiple (FSKTMULT). From the FSKTMULT, total kicks and kick decrement index [KDI] were calculated. Additionally, from both jump tests, the slow stretch-shortening cycle utilization (Slow SSC Utilization) was determined from the eccentric utilization ratio [EUR], pre-stretch augmentation [PSA], and reactive strength index [RSI]. RESULTS: There were positive and significant correlations between total kicks with 20MSR (r= 0.85; p= 0.00) and SJ (r= 0.66; p< 0.05). The multiple regression model demonstrated that total kicks where significantly influenced by 20MSR (R2= 71%; p= 0.00). Additionally, only EUR and RSI explained total kicks performance to a greater proportion (R2= 76%). CONCLUSIONS: The FSKTMULT total kicks performance is positively correlated and influenced by aerobic capacity and slow SSC utilization.


2020 ◽  
Vol 10 (18) ◽  
pp. 6562
Author(s):  
Sergio Sebastia-Amat ◽  
Alfonso Penichet-Tomas ◽  
Jose M. Jimenez-Olmedo ◽  
Basilio Pueo

The purpose of this study was to analyze the contribution of anthropometric and strength determinants of 2000 m ergometer performance in traditional rowing. Nineteen rowers competing at national level participated in this study. Anthropometric characteristics, vertical jumps and bench pull tests were assessed to determine conditional factors, whereas the 2000 m test was used to set rowing performance. Pearson correlation coefficient, linear stepwise and allometric regression analyses were used to predict rowing performance (R2 > 50%). Height, body mass and body muscle correlated with rowing performance in male and female rowers. Similarly, power output for squat jump and countermovement jump power correlated with performance. Finally, mean propulsive velocity, mean power and maximum power in bench pull also correlated with the test. Stepwise multiple regression analysis identified body mass (R2 = 0.69, p < 0.001) and mean propulsive velocity in bench pull (R2 = 0.76, p < 0.001) for male rowers and body muscle (R2 = 0.89, p = 0.002) and maximum power in bench pull (R2 = 0.62, p = 0.036) for female rowers as the best predictors of rowing performance. These results determine the relevance of anthropometric characteristics and, in contrast to Olympic rowing, support the greatest importance of upper body power in traditional rowing training.


2016 ◽  
Vol 51 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Iker J. Bautista ◽  
Ignacio J. Chirosa ◽  
Joseph E. Robinson ◽  
Roland van der Tillaar ◽  
Luis J. Chirosa ◽  
...  

Abstract The aim of the present study was to identify different cluster groups of handball players according to their physical performance level assessed in a series of physical assessments, which could then be used to design a training program based on individual strengths and weaknesses, and to determine which of these variables best identified elite performance in a group of under-19 [U19] national level handball players. Players of the U19 National Handball team (n=16) performed a set of tests to determine: 10 m (ST10) and 20 m (ST20) sprint time, ball release velocity (BRv), countermovement jump (CMJ) height and squat jump (SJ) height. All players also performed an incremental-load bench press test to determine the 1 repetition maximum (1RMest), the load corresponding to maximum mean power (LoadMP), the mean propulsive phase power at LoadMP (PMPPMP) and the peak power at LoadMP (PPEAKMP). Cluster analyses of the test results generated four groupings of players. The variables best able to discriminate physical performance were BRv, ST20, 1RMest, PPEAKMP and PMPPMP. These variables could help coaches identify talent or monitor the physical performance of athletes in their team. Each cluster of players has a particular weakness related to physical performance and therefore, the cluster results can be applied to a specific training programmed based on individual needs.


2020 ◽  
Vol 73 (1) ◽  
pp. 145-152
Author(s):  
Federico Nigro ◽  
Sandro Bartolomei

AbstractThe aim of this study was to compare the effects of two resistance training programs including either a deadlift or a parallel squat on lower body maximal strength and power in resistance trained males. Twenty-five resistance trained men were randomly assigned to a deadlift group (DE; n = 14; age = 24.3 ± 4.1 y; body mass = 84.8 ± 14.2 kg; body height = 180.3 ± 6.8 cm) or to a squat group (SQ; n = 11; age = 22.3 ± 1.6 y; body mass = 83.0 ± 13.6 kg; body height 179.9 ± 6.1 cm). Both groups trained 3 times per week for 6 weeks. The deadlift and the squat were the only lower body maximal strength exercises performed by DE and SQ groups, respectively, while both training programs included jumps. A significantly (p = 0.017) greater increase in deadlift 1RM was observed in the DE compared to the SQ group, while the SQ group obtained a significantly (p = 0.049) greater increase in squat 1RM. A significant increase in jump performance (p = 0.010), without significant interactions between groups (p = 0.552), was observed in both groups. Three participants of the DE group developed lower back pain and were excluded from the study. Results indicate that both the squat and the deadlift can result in similar improvement in lower body maximal strength and jump performance and can be successfully included in strength training programs. The incidence of back pain in the DE group may suggest a marked stress of this exercise on the lower back. Proper technique should be used to minimize the risk of injury, especially when the deadlift is performed.


2009 ◽  
Vol 21 (1) ◽  
pp. 34-46 ◽  
Author(s):  
James L. Nuzzo ◽  
Michael J. Cavill ◽  
N. Travis Triplett ◽  
Jeffrey M. McBride

The primary purpose of this investigation was to provide a descriptive analysis of lower-body strength and vertical jump performance in overweight male (n = 8) and female (n = 13) adolescents. Maximal strength was tested in the leg press and isometric squat. Kinetic and kinematic variables were assessed in vertical jumps at various loads. When compared with females, males demonstrated significantly greater (p ≤ .05) absolute maximal strength in the leg press. However, when maximal strength was expressed relative to body mass, no significant difference was observed. There were no significant differences between males and females in vertical jump performance at body mass.


2021 ◽  
pp. 1-10
Author(s):  
Alex Ojeda-Aravena ◽  
Tomás Herrera-Valenzuela ◽  
Pablo Valdés-Badilla ◽  
Jairo Azócar-Gallardo ◽  
Victor Campos-Uribe ◽  
...  

BACKGROUND: Explosive strength and change of direction speed (CODS) are relevant physical abilities in karate. OBJECTIVE: To examine the relationship between the characteristics of explosive strength and the 5-m linear sprint (5M) with CODS performance and ii) to examine the influential characteristics of explosive strength on CODS performance. METHODS: Eighteen cadet and junior karate athletes, eight females and ten males were evaluated. The physical abilities assessments included: squat jump (SJ), countermovement jump (CMJ), 5M and CODS. Also, pre-stretch percentage increase (PSA), eccentric utilization index (EUR) reactive strength index (RSI) were calculated. RESULTS: Superior performance (p< 0.05) was documented in SJ, CMJ and CODS in male vs. female. Also, significant correlations between CODS with SJ and CMJ (r=-0.70 to -0.80; R2=-0.51 to -0.73; p< 0.05, respectively) and correlations (r=-0.14 to -0.22; R2= 0.01 to 0.04; p> 0.05) between CODS with RSI, EUR and PSA. Multiple regression model documented that only SJ significantly influenced CODS performance in male (R2= 60%; p= 0.009) and female (R2= 71%; p= 0.001). CONCLUSION: CODS correlate with SJ and CMJ. In particular, SJ influence CODS independently of gender.


2012 ◽  
Vol 7 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Christos K. Argus ◽  
Nicholas D. Gill ◽  
Justin W.L. Keogh ◽  
Michael R. McGuigan ◽  
Will G. Hopkins

Purpose:There is little literature comparing contrast training programs typically performed by team-sport athletes within a competitive phase. We compared the effects of two contrast training programs on a range of measures in high-level rugby union players during the competition season.Methods:The programs consisted of a higher volume-load (strength-power) or lower volume-load (speed-power) resistance training; each included a tapering of loading (higher force early in the week, higher velocity later in the week) and was performed twice a week for 4 wk. Eighteen players were assessed for peak power during a bodyweight countermovement jump (BWCMJ), bodyweight squat jump (BWSJ), 50 kg countermovement jump (50CMJ), 50 kg squat jump (50SJ), broad jump (BJ), and reactive strength index (RSI; jump height divided by contact time during a depth jump). Players were then randomized to either training group and were reassessed following the intervention. Inferences were based on uncertainty in outcomes relative to thresholds for standardized changes.Results:There were small between-group differences in favor of strength-power training for mean changes in the 50CMJ (8%; 90% confidence limits, ±8%), 50SJ (8%; ±10%), and BJ (2%; ±3%). Differences between groups for BWCMJ, BWSJ, and reactive strength index were unclear. For most measures there were smaller individual differences in changes with strength-power training.Conclusion:Our findings suggest that high-level rugby union athletes should be exposed to higher volume-load contrast training which includes one heavy lifting session each week for larger and more uniform adaptation to occur in explosive power throughout a competitive phase of the season.


2016 ◽  
Vol 11 (6) ◽  
pp. 1728-1738 ◽  
Author(s):  
Erika Zemková ◽  
Oľga Kyselovičová ◽  
Michal Jeleň ◽  
Zuzana Kováčiková ◽  
Gábor Ollé ◽  
...  

This study evaluates the effect of 3 months resistance and aerobic training on muscle strength and power in 17 male overweight and obese men. Subjects underwent either a resistance or aerobic training for a period of 3 months (three sessions per week). Peak isometric force, rate of force development, peak power and height of countermovement and squat jumps, reactive strength index, and mean power in the concentric phase of bench presses were all assessed prior to and after completing the training program. Results identified a significant increase of mean power during both countermovement bench presses at 30 kg (18.6%, p = .021), 40 kg (14.6%, p = .033), and 50 kg (13.1%, p = .042) and concentric-only bench presses at 30 kg (19.6%, p = .017) and 40 kg (13.9%, p = .037) after the resistance training. There was also a significant increase in the height of the jump (12.8%, p = .013), peak power (10.1%, p = .026), and peak velocity (9.7%, p = .037) during the countermovement jump and height of the jump (11.8%, p = .019), peak power (9.6%, p = .032), and peak velocity (9.5%, p = .040) during the squat jump. There were no significant changes in the reactive strength index, peak force, and the rate of force development after the resistance training. The aerobic group failed to show any significant improvements in these parameters. It may be concluded that 3 months of resistance training without caloric restriction enhances upper and lower body muscle power in overweight and obese men.


Sign in / Sign up

Export Citation Format

Share Document