Effect of the moisture content on the physical properties of bitter gourd seed

2013 ◽  
Vol 27 (4) ◽  
pp. 455-461 ◽  
Author(s):  
H. Ünal ◽  
H.C. Alpsoy ◽  
A. Ayhan

Abstract Some physical and germination properties of bitter gourd seed were determined in a moisture content range of 9.3-32.1% d.b. For this moisture, the average length, width, and thickness of seed increased by 3.68, 4.07, and 4.56%, respectively. The geometric properties increased with increasing moisture content. The bulk density and rupture force decreased while thousand seed mass, true density, porosity, terminal velocity and static coefficient of friction increased with increasing moisture content. At all moisture contents, the maximum friction was offered by rubber, followed by plywood, aluminum, and galvanized iron surface. The seed germination duration, seedling emergence percentage, and germination index values gave the best results at the 19.9% moisture content, whereas fresh seedling mass was not affected by different moisture contents.

2014 ◽  
Vol 60 (No. 2) ◽  
pp. 75-82 ◽  
Author(s):  
S.P. Sonawane ◽  
G.P. Sharma ◽  
N.J. Thakor ◽  
R.C. Verma

Designing the equipment for processing, sorting and sizing of agricultural crops requires information about the crops&rsquo; physical properties. The physical properties of kokum seed were evaluated as a function of moisture content in the range of 7.35 to 25.79% d.b. (dry basis). The average length, width, thickness and one thousand seed mass were 17.17&nbsp;mm, 10.66 mm, 5.87 mm and 410 g, respectively, at a moisture content of 7.35% d.b. The average value of geometric mean diameter and sphericity were 10.19 mm and 59.75%, respectively, at moisture content of 7.35% d.b. As the moisture content increased from 7.35 to 25.79% d.b., the bulk density increased from 345 to 396 kg/m<sup>3</sup>, true density decreased from 1179 to 1070 kg/m<sup>3</sup>, and the corresponding porosity decreased from 65.73 to 55.46%; the repose angle and terminal velocity increased from 32.1 to 42.3&deg; and 4.30 to 6.73 m/s,respectively. The static coefficient of friction increased on three structural surfaces namely, glass (0.59&ndash;0.73), stainless steel (0.81&ndash;0.87) and plywood (0.74&ndash;0.83) in the moisture range from 7.35 to 25.79% d.b. Linear regression equations were used to express the physical properties of kokum seeds as a function of moisture content. &nbsp;


2010 ◽  
Vol 56 (No. 3) ◽  
pp. 99-106 ◽  
Author(s):  
S.M.T. Gharibzahedi ◽  
V. Etemad ◽  
J. Mirarab-Razi ◽  
M. Fos hat

Moisture-dependent engineering properties of pine nut were studied at 6.3, 8.2, 10.8, 14.5, 18.9, and 20.1% moisture content (dry basis). The length, width, thickness, and geometric mean diameter increased significantly (P &lt; 0.05) from 21.75 to 21.85 mm, 7.39 to 7.47 mm, 6.07 to 6.14 mm, and 9.89 to 9.98 mm, respectively, with an increase in moisture content from 6.3% to 20.1%, whereas the increase in sphericity from 45.49% to 45.69% was not significant. Similarly, thousand seed mass, true density, porosity, terminal velocity, and angle of repose increased (P &lt; 0.05) from 0.85 to 0.93 kg, 1043.3 to 1071 kg/m3, 41.31% to 44.57%, 8.67 to 8.83 m/s, and 35.4&deg; to 39&deg;, respectively, with an increase in moisture content under the experimental condition. Moreover, the bulk density decreased significantly (P &lt; 0.05) from 612.3 to 593.6 kg/m3. Coefficient of static friction increased (P &lt; 0.05) from 0.251 to 0.292, 0.241 to 0.271, 0.227 to 0.262, and 0.218 to 0.247 on plywood, galvanized iron sheet, stainless steel, and glass surfaces, respectively, with an increase in moisture content from 6.3% to 20.1%.


Author(s):  
Khaled Abdeen Mousa Ali ◽  
Wang Yuan Zong ◽  
Lin Yang ◽  
Horia Mohamed Abd El-Ghany

This study was carried out to measure some physical and mechanical properties of the sunflower seeds variety “DW667”. The physical properties (length, width, thickness, equivalent diameter, sphericity, surface area of seed, one thousand seed mass, bulk and true density, porosity) and mechanical properties (compressive load and displacement deformation for vertical and horizontal orientations) were measured at 4%, 10%, 15%, 20% and 25% Dray basis (d.b.) moisture contents. Higher moisture content from 4%to25% increased length, width, thickness, equivalent diameter, sphericity, surface area of seed, one thousand seed mass, bulk and true density, porosity and deformation displacement at the vertical and horizontal orientations of seeds increased from 10.57 to , 4.50 to , 2.85 to , 5.13 to , 49 to 50 %, 82.95 to 94.53 mm2, 33.70 to , 286.80 to 314.98 kg/m3, 406.47 to 483.61 kg/m3, 29.22 to 34.54 %, 1.63 to 2.63 mm and 0.70 to 1.87 mm, respectively. While the required compressive force for rupture seeds decreased from 25.3 to 12.39 N and 11.5 to 5.63 N for vertical and horizontal orientations, respectively with moisture contents uprising from 4 to 25 %. The findings of this study will open new windows in farm mechanization for the designing and improvement of treatment machines for this type of seed.


Author(s):  
Jafar Milani ◽  
Ali Moetamedzadegan

This study was carried out to determine the effect of moisture content on some physical properties of grape seed. Seven levels of moisture content varying from 12.26 to 24.61% (w.b.) were considered in this study. Length, width, thickness, geometric mean diameter, sphericity and 1000 seed mass increased by 2.58%, 3.63%, 8.36%, 4.78%, 2.14%, and 22.62%, respectively, with the increase of moisture content. Bulk and true density increased from 469.3 to 546.3 kg/m3 and 1058.7 to 1159.3 kg/m3, respectively, while porosity decreased from 55.67 to 52.87%. The angle of repose increased from 21.79 to 29.65° with the increase of moisture content. The hardness decreased from 58.72 to 23.34 N with increase in moisture content. The static coefficient of friction of seeds was determined on concrete, galvanized iron, plywood and glass sheets at various moisture contents. The highest and lowest static coefficients of friction were observed on concrete and glass sheet, respectively.


2003 ◽  
Vol 9 (6) ◽  
pp. 435-442 ◽  
Author(s):  
E. M. Santalla ◽  
R. H. Mascheroni

High oleic sunflower seeds evaluated at 5.6% moisture content (dry basis) showed a surface area of approximately 102.41 mm2 with an average length, width, thickness and unit mass of 11.526, 5.008 and 2.809 mm and 0.055 g, respectively. Corresponding values for the kernel were 8.802, 3.897 and 1.907 mm and 0.036 g. The mean equivalent diameter and sphericity of the seeds were 5.49 mm and 0.46, respectively, while corresponding values for the kernels were 4.01 mm and 0.44. True density increased, within a moisture range of 4-26% d.b., between 652 and 708 kg/m3 for the seed, between 1015 and 1057 kg/m3 for the kernel and between 636 and 760 kg/m3 for the hull. The bulk density decreased from 386 to 373 kg/m3 for seeds and from 260 to 220 kg/m3 for hulls and increased from 535 to 553 kg/m3 for the kernels. Porosity increased from 41.2 to 47.1% in seeds, from 47.2 to 47.7% in kernels and from 59.2 to 70.1% in hull. Terminal velocity of seeds increased with moisture content between 2.8 and 5.5 m/s for seed, between 1.8 and 3.8 m/s for kernel and between 1.1 and 1.9 m/s for hull. Drag coefficient decreased when moisture content increased and varied between 4.7 and 1.4 in seed and between 12.5 and 3.1 in kernel. Angle of repose increased with moisture content between 25 and 46 in seeds, between 35 and 55 in kernels and between 49 and 66 in hull on different surfaces and resulted higher for hull and kernel than for seed. The coefficient of static friction was higher for kernel than that for seed and hull and also was higher on wood (with grain perpendicular to the direction of the motion) and lower on acrylic and galvanised iron. This coefficient increased with moisture content from 0.23 to 0.50 for seed, from 0.37 to 0.69 for kernel and from 0.31 to 0.60 for hull. All engineering properties evaluated showed a linear dependence with moisture content, leading to simple and accurate formulae, adequate to predict their variation in the range of moisture considered.


Author(s):  
Mehran Ghasemlou ◽  
Faramarz Khodaiyan ◽  
Seyed Mohammd Taghi Gharibzahedi ◽  
Ali Moayedi ◽  
Behnam Keshavarz

Determination of physical and mechanical properties can facilitate the design calculations of harvesting, handling, sorting and processing equipments. In this study, these properties of mungbean have been evaluated as a function of seed moisture content varying from 8.72 to 27.41% (d.b.). In this moisture range, the length, width, thickness, geometric mean diameter and surface area increased significantly (p < 0.05) from 4.32 to 5.10 mm, 3.33 to 3.54 mm, 3.30 to 3.59 mm, 3.62 to 4.01 mm and 41.1 to 50.6 mm2, respectively, whereas sphericity, porosity, bulk and true density decreased significantly (p < 0.05) from 83.80 to 78.63%, 39 to 36.56%, 841.3 to 730.7 kg/m3 and 1379.1 to 1151.8 kg/m3, respectively. Moreover, thousand seed mass, angle of repose and terminal velocity increased (p < 0.01) from 37.3 to 43.8 g, 31.6 to 40.3° and 4.9 to 5.8 m/s, respectively, by increasing the moisture content. The static coefficient of friction of mungbean seed increased against the surfaces of four structural materials, namely plywood (31.54 %), glass (29.54%), stainless steel (21.56%) and galvanized iron sheet (11.41%) as the moisture content increased from 8.72% to 27.41% d.b. Also, the results showed that the force required for initiating seed rupture decreased from 40.56 to 23.04 N and 59.82 to 19.51 N, and the energy absorbed at seed rupture increased from 7.20 to 27.36 mJ and 9.87 to 31.22 mJ by increasing in moisture content from 8.72% to 27.41% d.b. for vertical and horizontal orientations, respectively (p < 0.01).


Author(s):  
Mohammad Jouki ◽  
Zahra Emam-Djomeh ◽  
Naimeh Khazaei

Abstract Certain physical properties of rye – density, true density, angle of internal friction, porosity and static coefficient of friction – are necessary for the design of transport, storage and processing equipment. . These properties were evaluated as a function of moisture content of grain. The grain was tested for bulk density, density, porosity, angle of internal friction and coefficient of friction with various materials at 9% and 13% moisture content (dry basis, db). The average length, width and thickness of the rye grains were 7.11mm, 4.65mm and 3.18mm. It was observed that bulk density decreased linearly from 598.41 to 580.76 kg/m3, as moisture content increased, while density increased linearly from 922.43 to 991.56 kg/m3. The porosity and angle of internal friction increased as moisture increased. The porosity increased linearly from 37.00% to 40.50%, and the angle of internal friction increased from 21.500 to 25.000. The static coefficient of friction increased from 0.283 to 0.412, 0.345 to 0.438, and 0.380 to 0.461 for glass, galvanized iron and wood surfaces respectively.


2017 ◽  
Vol 39 (4) ◽  
pp. 374-384
Author(s):  
Cesar Pedro Hartmann Filho ◽  
André Luís Duarte Goneli ◽  
Tathiana Elisa Masetto ◽  
Elton Aparecido Siqueira Martins ◽  
Guilherme Cardoso Oba

Abstract: This study evaluated the physiological potential of soybean seeds harvested during two seasons, on different maturation stages and subjected to different drying temperatures. The seeds were harvested at the maturations stages R7, R7 + 2, R7 + 3, R7 + 5, R7 + 6, R7 + 7, R7 + 10 and R7 + 12 days (55, 50, 45, 40, 35, 30, 25, and 20% of moisture content). For each maturation stage, seeds were divided into three samples: one sample was used to directly evaluate the physiological potential, and the others were dried at 40 °C and 50 °C, until reaching the moisture content of 11.5%. The physiological potential was evaluated through germination test, first germination count of germination, accelerated aging, modified cold, electrical conductivity and seedling emergence. The maximum physiological potential of seeds is achieved at the moisture content of 55%, the point that the dry matter is maximum. The seeds became tolerant to artificial drying approximately at the stage R7 + 7 days (30% of moisture content). Germination and vigor of the soybean seeds reduce as the drying temperature is increased from 40 °C to 50 °C, and this effect is enhanced when the seeds show moisture contents above 30%.


2015 ◽  
Vol 47 (4) ◽  
pp. 23-40
Author(s):  
F. Shahbazi

Abstract Several physical properties of three safflower cultivars (IL-111, LRV51-51 and Zarghan279) at moisture contents of 10, 15, 20 and 25% were determined and compared. All the linear dimensions, geometric mean diameter and sphericity of safflower seeds increase linearly with increase in seed moisture content. The values of geometric properties were higher for IL-111cultivar than the LRV51-51 and Zarghan279 cultivars. The values of the bulk densities decreased, whereas the thousand seeds mass, true density and porosity were increased with increase in seed moisture content. All the gravimetric properties for the three cultivars of safflower were significantly different (p<0.05). The values of the terminal velocity for all cultivars were significantly increased as the moisture content increased. The terminal velocity for the three cultivars of safflower were significantly different (p<0.05). On the two different surfaces, the coefficient of static friction of the IL-111 cultivar was significantly greater than that of the other cultivars. The static coefficient of friction was higher on plywood and lower for galvanized steel. The values of the angle of repose increased with increase of the moisture content. The values of the angle of repose for Zarghan279 cultivar were higher than the IL-111, LRV51-51 cultivars.


2014 ◽  
Vol 931-932 ◽  
pp. 1574-1581
Author(s):  
Nirattisak Khongthon ◽  
Somposh Sudajan

The physical and mechanical properties of sugarcane leaves were necessary for the design consideration of the relating storage, handling and processing equipment. The sugarcane trash at moisture contents of 23.40 and 73.91 % w.b. were used for this study. The mean length and unit weight of sugarcane trashes were 168.63 cm and 65.87 grams respectively. The average number of leaf of each sample was 4. The mean diameter of the thrash top, width and thickness increased with the increase of moisture from 23.40 and 73.91 % w.b.. The average leaf angles (β) relative to the horizontal plane of the first left leaf, second left leaf, first right leaf and second right leaf were 65.10, 73.36, 71.07 and 78.26 degrees for 73.91 % w.b., and 66.33, 73.50, 67.50 and 75.83 degrees for 23.40 % w.b. respectively. When the moisture content increased from 23.40 to 73.91% w.b., the static coefficient of friction increased from 0.30 to 0.43, 0.38 to 0.41, 0.30 to 0.37 and 0.54 to 0.66 for plywood, mild steel, galvanized iron and rubber plate respectively. The least static coefficient of friction occurred on the galvanized iron plate. The results from experimenting on mechanical properties showed that the maximum shearing force increased with the increase in moisture content from 23.40 to 73.91% w.b. respectively. The maximum shearing force was 360.15 and 457.32 N for moisture contents of 23.40 and 73.91% w.b.. The maximum tensile force decreased toward upper region of the leaf for both 23.40 and 73.91% w.b.. The results of this study would be useful for the design and optimization of the equipment associated with harvesting, threshing, chopping and processing.


Sign in / Sign up

Export Citation Format

Share Document