scholarly journals Tiso Adjustable Filter with Controllable Controlled–Gain Voltage Differencing Current Conveyor

2014 ◽  
Vol 65 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Jan Jerabek ◽  
Roman Sotner ◽  
Kamil Vrba

Abstract The main aim of this paper is to present solution of triple-input single-output (TISO) filter with independently adjustable pole frequency, quality factor, bandwidth and also gain. Filter is universal, operates in current mode and includes only one active element - the so-called Controlled-Gain Voltage Differencing Current Conveyor (CG-VDCC) with two controllable parameters: transconductance (gm) and gain of output currents (BX ). Implementation of CG-VDCC element in 0.18 μm CMOS technology is also included and this model is used in proposed filter simulations.

This article given a second generation current controlled current conveyor positive (CCCII+), second generation current controlled current conveyor negative (CCCII-), Quadrature oscillator with high-Q frequency choosing network and implementing completely different phase oscillators by employing (CCCII+) positive and (CCCII-) negative, and high band pass filter network, the approach is predicted on the CMOS technology . The root of this concept is, considering a customary voltage mode oscillator which consists of band pass filter with prime quality issue (high-Q) and voltage mode amplifier is transfigure into current mode oscillator by replacing tans-conductance amplifier. Because the loop of the oscillator is has lavish selectivity, the oscillator process less distortion. In addition 3dB bandwidth, oscillating condition, oscillation frequency of the oscillator could linearly, independently and electronically be tuned by adjusting the bias current of the (CCCII±)[1], lastly different simulations have been carried out to verify the linearity between output and input ports, range of frequency operations. These results can justify that the designed circuits are workable.


2016 ◽  
Vol 25 (09) ◽  
pp. 1650107 ◽  
Author(s):  
Ali Kircay ◽  
Selim Borekci

In this paper, electronically-tunable, current-mode biquad is proposed by using multiple-output operational transconductance amplifiers (MO-OTAs). The proposed circuit has one input and two outputs. Without changing the circuit topology, low-pass (LP), and band-pass (BP) responses can be realized. The filter is realized by using two MO-OTAs, a single-output OTA (SO-OTA), a two-output OTA and two grounded capacitors. The biquad is designed based on first-order LP filter or lossy integrator blocks. The feedback block is applied to the filter circuit in order to obtain high quality factor values greater than 1/2. The center frequency and the quality factor of the LP and BP filters can be electronically tuned by DC current of OTAs. The total power dissipation of the proposed biquad is approximately 10[Formula: see text]mW at [Formula: see text][Formula: see text]V supplied voltage. The theoretical analysis is also confirmed with SPICE simulations.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A universal voltage-mode filter (VM) and a current-mode filter (CM) based on recently proposed active building block, namely, differential voltage current conveyor transconductance amplifier (DVCCTA) are proposed. Both the circuits use a single DVCCTA, two capacitors, and a single resistor. The filters enjoy low-sensitivity performance and low component spread and exhibit electronic tunability of filter parameters via bias currents of DVCCTA. SPICE simulation using 0.25 μm TSMC CMOS technology parameters is included to show the workability of the proposed circuits.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A new active building block for analog signal processing, namely, differential difference current conveyor transconductance amplifier (DDCCTA), is presented, and performance is checked through PSPICE simulations which show the usability of the proposed element is up to 201 MHz. The proposed block is implemented using 0.25 μm TSMC CMOS technology. Some of the applications are presented using the proposed DDCCTA, namely, a voltage mode multifunction filter, a current mode universal filter, an oscillator, current and voltage amplifiers, and grounded inductor simulator. The feasibility of DDCCTA and its applications is confirmed via PSPICE simulations.


2021 ◽  
Vol 11 (2) ◽  
pp. 146-160
Author(s):  
Suvajit Roy ◽  
Tapas Kumar Paul ◽  
Saikat Maiti ◽  
Radha Raman Pal

The objective of this study is to present four new universal biquad filters, two voltage-mode multi-input-single-output (MISO), and two current-mode single-input-multi-output (SIMO). The filters employ one voltage differencing current conveyor (VDCC) as an active element and two capacitors along with two resistors as passive elements. All the five filter responses, i.e., high-pass, low-pass, band-pass, band-stop, and all-pass responses, are obtained from the same circuit topology. Moreover, the pole frequency and quality factor are independently tunable. Additionally, they do not require any double/inverted input signals for response realization. Furthermore, they enjoy low active and passive sensitivities. Various regular analyses support the design ideas. The functionality of the presented filters are tested by PSPICE simulations using TSMC 0.18 µm technology parameters with ± 0.9 V supply voltage. The circuits are also justified experimentally by creating the VDCC block using commercially available OPA860 ICs. The experimental and simulation results agree well with the theoretically predicted results.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750050 ◽  
Author(s):  
Jan Jerabek ◽  
Roman Sotner ◽  
Josef Polak ◽  
Lukas Langhammer ◽  
Norbert Herencsar ◽  
...  

Presented work deals with applications of the single [Formula: see text]-copy controlled-gain voltage differencing current conveyor (ZC-CG-VDCC) in single purpose and multifunctional biquadratic voltage- and current-mode active resistor-less filters. Electronically adjustable features of the active device (intrinsic current input resistance [Formula: see text], current gain [Formula: see text] and transconductance [Formula: see text]) are controlled by DC bias current. These mentioned adjustable features allow interesting possibilities of control of the pole frequency and quality factor. Four voltage-mode solutions realizing low-pass, band-pass, high-pass and band-reject filtering solutions were designed together with two current-mode filters. The current-mode solutions have curious multifunctional capability based on full utilization of electronically controllable parameters of the ZC-CG-VDCC. Two adjustable parameters of the ZC-CG-VDCC (intrinsic current input resistance and transconductance) are used for electronic setting of features of the filter (pole frequency, quality factor, tuning). Control of the third adjustable parameter (current gain) causes reconnection-less change of the transfer function between iAP (inverting all-pass response) and iBR (inverting band-reject responses). Simulation results in PSPICE and Cadence CDS 6 are used to show characteristics of the proposed circuits.


Author(s):  
Jyoti Sharma ◽  
Shantanu Chakraborty

<p>In the last decade, there has been much effort to reduce the supply voltage of electronic circuits due to the demand for portable and battery-powered equipment. Since a low-voltage operating circuit becomes necessary, the current-mode technique is ideally suited for this purpose more than the voltage-mode one. In this paper, performance of multi output current controlled current differencing transconductance amplifier (MOCCCDTA) is evaluated using 180nm, 90nm and 45nm CMOS technology. It is found that the 45nm CMOS-based<br />MOCCCDTA provides highest frequency i.e. 33GHz. Further a Universal biquad filter has been designed using a single MOCCCDTA as an active element and two capacitors. Filter offers high frequency in GHz. Tunability of all the filter outputs with respect to a bias current has been analyzed. The tunability of the filter circuit for Bluetooth applications is also shown in this work. The performances of MOCCCDTA circuit and Universal biquad filter are illustrated by HSPICE. The simulation results are found to be in agreement with the theoretical predictions.</p>


Author(s):  
Jyoti Sharma ◽  
Shantanu Chakraborty

<p>In the last decade, there has been much effort to reduce the supply voltage of electronic circuits due to the demand for portable and battery-powered equipment. Since a low-voltage operating circuit becomes necessary, the current-mode technique is ideally suited for this purpose more than the voltage-mode one. In this paper, performance of multi output current controlled current differencing transconductance amplifier (MOCCCDTA) is evaluated using 180nm, 90nm and 45nm CMOS technology. It is found that the 45nm CMOS-based<br />MOCCCDTA provides highest frequency i.e. 33GHz. Further a Universal biquad filter has been designed using a single MOCCCDTA as an active element and two capacitors. Filter offers high frequency in GHz. Tunability of all the filter outputs with respect to a bias current has been analyzed. The tunability of the filter circuit for Bluetooth applications is also shown in this work. The performances of MOCCCDTA circuit and Universal biquad filter are illustrated by HSPICE. The simulation results are found to be in agreement with the theoretical predictions.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper introduces a new window comparator circuit utilizing a new current conveyor and two diodes, operable at ±1.25 V and capable of accurately detecting the voltage windows. Another modified circuit with distinct binary levels suited for automatic control applications is also suggested. Exhaustive simulation results showing detection of windows, as small as 50 mV and as high as 1 V, are included. Comparisons are further drawn with the traditional operational amplifier based circuit and the new circuit is found to benefit from the use of current-mode active element, namely, Extra-X Current Controlled Current Conveyor. The proposed theory is well supported through simulation results.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Soma Ahmadi ◽  
Seyed Javad Azhari

This paper aims to introduce a novel Fully Differential second generation Current Conveyor (FDCCII) and its application to design a novel Low Power (LP), very high CMRR, and wide bandwidth (BW) Current Mode Instrumentation Amplifier (CMIA). In the proposed application, CMRR, as the most important feature, has been greatly improved by using both common mode feed forward (CMFF) and common mode feedback (CMFB) techniques, which are verified by a perfect circuit analysis. As another unique quality, it neither needs well-matched active blocks nor matched resistors but inherently improves CMRR, BW, and power consumption hence gains an excellent matchless choice for integration. The FDCCII has been designed using 0.18 um TSMC CMOS Technology with ±1.2 V supply voltages. The simulation of the proposed FDCCII and CMIA have been done in HSPICE LEVEL 49. Simulation results for the proposed CMIA are as follow: Voltage CMRR of 216 dB, voltage CMRR BW of 300 Hz. Intrinsic resistance of X-terminals is only 45 Ω and the power dissipation is 383.4 μW.  Most favourably, it shows a constant differential voltage gain BW of 18.1 MHz for variable gains (here ranging from 0 dB to 45.7 dB for example) removing the bottleneck of constant gain-BW product of Voltage mode circuits.


Sign in / Sign up

Export Citation Format

Share Document