scholarly journals Segmental intracellular, interstitial, and intravascular volume changes during simulated hemorrhage and resuscitation: A case study

2019 ◽  
Vol 10 (1) ◽  
pp. 40-46
Author(s):  
Leslie D. Montgomery ◽  
Richard W. Montgomery ◽  
Wayne A. Gerth ◽  
Michael Bodo ◽  
Julian M. Stewart ◽  
...  

Abstract This paper describes a new combined impedance plethysmographic (IPG) and electrical bioimpedance spectroscopic (BIS) instrument and software that will allow noninvasive real-time measurement of segmental blood flow, intracellular, interstitial, and intravascular volume changes during various fluid management procedures. The impedance device can be operated either as a fixed frequency IPG for the quantification of segmental blood flow and hemodynamics or as a multi-frequency BIS for the recording of intracellular and extracellular resistances at 40 discrete input frequencies. The extracellular volume is then deconvoluted to obtain its intravascular and interstitial component volumes as functions of elapsed time. The purpose of this paper is to describe this instrumentation and to demonstrate the information that can be obtained by using it to monitor segmental compartment volume responses of a pig model during simulated hemorrhage and resuscitation. Such information may prove valuable in the diagnosis and management of rapid changes in the body fluid balance and various clinical treatments.

2019 ◽  
Vol 8 (1) ◽  
pp. 40-53 ◽  
Author(s):  
Leslie D. Montgomery ◽  
Richard W. Montgomery ◽  
Wayne A. Gerth ◽  
Marty Loughry ◽  
Susie Q. Lew ◽  
...  

Abstract This paper describes a new combined impedance plethysmographic (IPG) and electrical bioimpedance spectroscopic (BIS) instrument and software that allows noninvasive real-time measurement of segmental blood flow and changes in intracellular, interstitial, and intravascular volumes during various fluid management procedures. The impedance device can be operated either as a fixed frequency IPG for the quantification of segmental blood flow and hemodynamics or as a multi-frequency BIS for the recording of intracellular and extracellular resistances at 40 discrete input frequencies. The extracellular volume is then deconvoluted to obtain its intra-vascular and interstitial component volumes as functions of elapsed time. The purpose of this paper is to describe this instrumentation and to demonstrate the information that can be obtained by using it to monitor segmental compartment volumes and circulatory responses of end stage renal disease patients during acute hemodialysis. Such information may prove valuable in the diagnosis and management of rapid changes in the body fluid balance and various clinical treatments.


2013 ◽  
Vol 51 (10) ◽  
pp. 1167-1175 ◽  
Author(s):  
Leslie D. Montgomery ◽  
Wayne A. Gerth ◽  
Richard W. Montgomery ◽  
Susie Q. Lew ◽  
Michael M. Klein ◽  
...  

2013 ◽  
Vol 51 (10) ◽  
pp. 1177-1177
Author(s):  
Leslie D. Montgomery ◽  
Wayne A. Gerth ◽  
Richard W. Montgomery ◽  
Susie Q. Lew ◽  
Michael M. Klein ◽  
...  

1982 ◽  
Vol 2 (4) ◽  
pp. 466-474 ◽  
Author(s):  
Y. Matsuoka ◽  
K.-A. Hossmann

In 30 adult cats, anesthetized with nitrous oxide and halothane, the middle cerebral artery was occluded using a transorbital approach. Extracellular volume changes were assessed by recording cortical impedance, and correlated with blood flow, tissue osmolality, and water and electrolyte content of brain tissue. Following middle cerebral artery occlusion, cortical impedance, after a free interval of about 1 min, sharply increased and after 30 to 60 min gradually stabilized between 180 and 200% of control. Calculated extracellular fluid volume decreased from 23.8 ± 1.2 to 13.1 ± 1.0% after 1 h and to 12.5 ± 1.0% after 2 h of ischemia. Shortly after middle cerebral artery occlusion, extracellular volume shifts correlated with blood flow over a range from 3 to 50 ml/100 g/min. Two hours later, a threshold-like dependency existed: below 25 ml/100 g/min extracellular space was reduced to about 50% of control; above 32 ml/100 g/min extracellular space was normal. Non-threshold correlations existed between extracellular space, tissue osmolality, and the electroencephalogram. Final water content of brain tissue correlated with the size of the extracellular space after 15 min, but not after 2 h of ischemia. This indicates that the narrowing of the extracellular compartment and ischemic brain edema are relatively independent consequences of cerebral ischemia.


2021 ◽  
Vol 12 (1) ◽  
pp. 103-116
Author(s):  
Leslie D. Montgomery ◽  
Richard W. Montgomery ◽  
Michael Bodo ◽  
Richard T. Mahon ◽  
Frederick J. Pearce

Abstract Positive end-expiratory pressure (PEEP) is a respiratory/ventilation procedure that is used to maintain or improve breathing in clinical and experimental cases that exhibit impaired lung function. Body fluid shift movement is not monitored during PEEP application in intensive care units (ICU), which would be interesting specifically in hypotensive patients. Brain injured and hypotensive patients are known to have compromised cerebral blood flow (CBF) autoregulation (AR) but currently, there is no non-invasive way to assess the risk of implementing a hypotensive resuscitation strategy and PEEP use in these patients. The advantage of electrical bioimpedance measurement is that it is noninvasive, continuous, and convenient. Since it has good time resolution, it is ideal for monitoring in intensive care units (ICU). The basis of its future use is to establish physiological correlates. In this study, we demonstrate the use of electrical bioimpedance measurement during bleeding and the use of PEEP in pig measurement. In an anesthetized pig, we performed multimodal recording on the torso and head involving electrical bioimpedance spectroscopy (EIS), fixed frequency impedance plethysmography (IPG), and bipolar (rheoencephalography – REG) measurements and processed data offline. Challenges (n=16) were PEEP, bleeding, change of SAP, and CO2 inhalation. The total measurement time was 4.12 hours. Systemic circulatory results: Bleeding caused a continuous decrease of SAP, cardiac output (CO), and increase of heart rate, temperature, shock index (SI), vegetative - Kerdo index (KI). Pulse pressure (PP) decreased only after second bleeding which coincided with loss of CBF AR. Pulmonary arterial pressure (PAP) increased during PEEP challenges as a function of time and bleeding. EIS/IPG results: Body fluid shift change was characterized by EIS-related variables. Electrical Impedance Spectroscopy was used to quantify the intravascular, interstitial, and intracellular volume changes during the application of PEEP and simulated hemorrhage. The intravascular fluid compartment was the primary source of blood during hemorrhage. PEEP produced a large fluid shift out of the intravascular compartment during the first bleeding period and continued to lose more blood following the second and third bleeding. Fixed frequency IPG was used to quantify the circulatory responses of the calf during PEEP and simulated hemorrhage. PEEP reduced the arterial blood flow into the calf and venous outflow from the calf. Head results: CBF AR was evaluated as a function of SAP change. Before bleeding, and after moderate bleeding, intracranial pressure (ICP), REG, and carotid flow pulse amplitudes (CFa) increased. This change reflected vasodilatation and active CBF AR. After additional hemorrhaging during PEEP, SAP, ICP, REG, CFa signal amplitudes decreased, indicating passive CBF AR. 1) The indicators of active AR status by modalities was the following: REG (n=9, 56 %), CFa (n=7, 44 %), and ICP (n=6, 38 %); 2) CBF reactivity was better for REG than ICP; 3) REG and ICP correlation coefficient were high (R2 = 0.81) during CBF AR active status; 4) PRx and REGx reflected active CBF AR status. CBF AR monitoring with REG offers safety for patients by preventing decreased CBF and secondary brain injury. We used different types of bioimpedance instrumentation to identify physiologic responses in the different parts of the body (that have not been discussed before) and how the peripheral responses ultimately lead to decreased cardiac output and changes in the head. These bioimpedance methods can improve ICU monitoring, increase the adequacy of therapy, and decrease mortality and morbidity.


2018 ◽  
Vol 6 (9) ◽  
Author(s):  
DR.MATHEW GEORGE ◽  
DR.LINCY JOSEPH ◽  
MRS.DEEPTHI MATHEW ◽  
ALISHA MARIA SHAJI ◽  
BIJI JOSEPH ◽  
...  

Blood pressure is the force of blood pushing against blood vessel walls as the heart pumps out blood, and high blood pressure, also called hypertension, is an increase in the amount of force that blood places on blood vessels as it moves through the body. Factors that can increase this force include higher blood volume due to extra fluid in the blood and blood vessels that are narrow, stiff, or clogged(1). High blood pressure can damage blood vessels in the kidneys, reducing their ability to work properly. When the force of blood flow is high, blood vessels stretch so blood flows more easily. Eventually, this stretching scars and weakens blood vessels throughout the body, including those in the kidneys.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Atsushi Tanaka ◽  
Michio Shimabukuro ◽  
Hiroki Teragawa ◽  
Yosuke Okada ◽  
Toshinari Takamura ◽  
...  

Abstract Backgrounds/Aim Sodium glucose co-transporter 2 inhibitors promote osmotic/natriuretic diuresis and reduce excess fluid volume, and this improves cardiovascular outcomes, including hospitalization for heart failure. We sought to assess the effect of empagliflozin on estimated fluid volumes in patients with type 2 diabetes and cardiovascular disease (CVD). Methods The study was a post-hoc analysis of the EMBLEM trial (UMIN000024502), an investigator-initiated, multi-center, placebo-controlled, double-blinded, randomized-controlled trial designed primarily to evaluate the effect of 24 weeks of empagliflozin treatment on vascular endothelial function in patients with type 2 diabetes and established CVD. The analysis compared serial changes between empagliflozin (10 mg once daily, n = 52) and placebo (n = 53) in estimated plasma volume (ePV), calculated by the Straus formula and estimated the extracellular volume (eEV), determined by the body surface area, measured at baseline and 4, 12, and 24 weeks after initiation of treatment. Correlations were examined between the changes from baseline to week 24 in each estimated fluid volume parameter and several clinical variables of interest, including N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration. Results In an analysis using mixed-effects models for repeated measures, relative to placebo empagliflozin reduced ePV by − 2.23% (95% CI − 5.72 to 1.25) at week 4, − 8.07% (− 12.76 to − 3.37) at week 12, and − 5.60% (− 9.87 to − 1.32) at week 24; eEV by − 70.3 mL (95% CI − 136.8 to − 3.8) at week 4, − 135.9 mL (− 209.6 to − 62.3) at week 12, and − 144.4 mL (− 226.3 to − 62.4) at week 24. The effect of empagliflozin on these parameters was mostly consistent across various patient clinical characteristics. The change in log-transformed NT-proBNP was positively correlated with change in ePV (r = 0.351, p = 0.015), but not with change in eEV. Conclusions Our data demonstrated that initiation of empagliflozin treatment substantially reduced estimated fluid volume parameters in patients with type 2 diabetes and CVD, and that this effect was maintained for 24 weeks. Given the early beneficial effect of empagliflozin on cardiovascular outcomes seen in similar patient populations, our findings provide an important insight into the key mechanisms underlying the clinical benefit of the drug. Trial registration University Medical Information Network Clinical Trial Registry, number 000024502


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michal Sitina ◽  
Heiko Stark ◽  
Stefan Schuster

AbstractIn humans and higher animals, a trade-off between sufficiently high erythrocyte concentrations to bind oxygen and sufficiently low blood viscosity to allow rapid blood flow has been achieved during evolution. Optimal hematocrit theory has been successful in predicting hematocrit (HCT) values of about 0.3–0.5, in very good agreement with the normal values observed for humans and many animal species. However, according to those calculations, the optimal value should be independent of the mechanical load of the body. This is in contradiction to the exertional increase in HCT observed in some animals called natural blood dopers and to the illegal practice of blood boosting in high-performance sports. Here, we present a novel calculation to predict the optimal HCT value under the constraint of constant cardiac power and compare it to the optimal value obtained for constant driving pressure. We show that the optimal HCT under constant power ranges from 0.5 to 0.7, in agreement with observed values in natural blood dopers at exertion. We use this result to explain the tendency to better exertional performance at an increased HCT.


2008 ◽  
Vol 5 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Sae Uchida ◽  
Harumi Hotta

In this review, our recent studies using anesthetized animals concerning the neural mechanisms of vasodilative effect of acupuncture-like stimulation in various organs are briefly summarized. Responses of cortical cerebral blood flow and uterine blood flow are characterized as non-segmental and segmental reflexes. Among acupuncture-like stimuli delivered to five different segmental areas of the body; afferent inputs to the brain stem (face) and to the spinal cord at the cervical (forepaw), thoracic (chest or abdomen), lumbar (hindpaw) and sacral (perineum) levels, cortical cerebral blood flow was increased by stimuli to face, forepaw and hindpaw. The afferent pathway of the responses is composed of somatic groups III and IV afferent nerves and whose efferent nerve pathway includes intrinsic cholinergic vasodilators originating in the basal forebrain. Uterine blood flow was increased by cutaneous stimulation of the hindpaw and perineal area, with perineal predominance. The afferent pathway of the response is composed of somatic group II, III and IV afferent nerves and the efferent nerve pathway includes the pelvic parasympathetic cholinergic vasodilator nerves. Furthermore, we briefly summarize vasodilative regulation of skeletal muscle blood flow via a calcitonin gene-related peptide (CGRP) induced by antidromic activation of group IV somatic afferent nerves. These findings in healthy but anesthetized animals may be applicable to understanding the neural mechanisms improving blood flow in various organs following clinical acupuncture.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Tai-Yuan Chuang ◽  
Chia-Ying Lien ◽  
Chih-Hsiang Hsu ◽  
Chen-Wen Lu ◽  
Chung-Hsin Wu

Hypothyroidism frequently causes cardiopulmonary dysfunction, such as heart failure and respiratory and metabolic deficiencies. This study investigated the effects of Chinese herbal formula B307 on thyroidectomy-induced cardiopulmonary exercise dysfunction in rats. Twenty male rats were equally divided into four groups: negative control with sham treatment, positive control with oral B307 treatment only, thyroidectomy treatment only, and thyroidectomy with B307 posttreatment groups. The feeding dose of B307 was 50 mg/kg per day for 14 days. We examined and then compared the thyroid-stimulating hormone (TSH), free triiodothyronine (T3), free thyroxine (T4), and reactive oxygen species (ROS) from the blood of these four groups. Also, we compared the body weight, neck subcutaneous blood flow, cardiac ejection function, cardiopulmonary exercise function of oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory quotient (RQ = VCO2/VO2) among the four groups. Our results indicated that thyroidectomized rats had significantly decreased body weight, neck subcutaneous blood flow, cardiac ejection function, serum T3 and T4, and VO2 and VCO2, but had significantly increased ROS and TSH levels and RQ values compared with sham rats (P<0.01–0.05). In addition, thyroidectomized rats receiving oral B307 treatment had significantly increased body weight, neck subcutaneous blood flow, cardiac ejection function, and VO2, but significantly decreased ROS and TSH levels and VCO2 and RQ values compared with thyroidectomized rats (P<0.01–0.05). We suggest that the B307 could be a protective and beneficial alternative treatment for thyroidectomy-induced cardiopulmonary exercise dysfunction.


Sign in / Sign up

Export Citation Format

Share Document