scholarly journals Phytoplankton biomass and species composition in relation to some physical and chemical characteristics of Lake Adale, Haramaya Woreda, Oromia Region, Ethiopia

2013 ◽  
Vol 13 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Zelalem Dessalegn Fayissa

Abstract Biomass and species composition of phytoplankton in relation to the physical and chemical conditions of the water in Lake Adale were studied from March, 2011 to September, 2011. All the physical, chemical and biological parameters measured varied temporally. The temperature of the lake was measured by digital oxygen meter and varied from 22°C to 26°C. The chemistry of the lake was basically similar to the dilute East African lake waters, with maximum pH values of 9.2 as measured in situ by a portable digital pH meter. The inorganic nutrients, which were of moderately high levels, varied temporally as a function of hydrological, hydrographic and biological conditions of the lake and were measured by a Hach kit (DR/2000 spectrophotometer) for nitrate, and colorimetrically with the ascorbic acid method for phosphate and molybdosilicate method for silica. The phytoplankton community, which was consistently dominated by cyanobacteria, exhibited low species diversity. Phytoplankton biomass measured as chlorophyll a varied from 23.35 to 55.18 mg m-3 .The concentration of chlorophyll a was calculated according to Talling and Driver (1963) using absorbance measurements made at 665 and 750 nm. The biomass of the lake indicates that the lake is a productive one. The factors responsible for the observed temporal variations in the physical, chemical and biological features of the lake are discussed.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


2017 ◽  
Vol 3 (2) ◽  
pp. 104
Author(s):  
Dewi Elfidasari ◽  
Nita Noriko ◽  
Yunus Effendi ◽  
Riris Lindiawati Puspitasari

<div class="WordSection1"><p><em>Abstrak</em> - <strong>Situ Lebak Wangi merupakan situ yang berada di daerah Bogor, dan awalnya dimanfaatkan sebagai tempat penampungan air saat musim hujan untuk peningkatkan persediaan  air tanah.  Saat ini, Situ Lebak Wangi dimanfaatkan sebagai tempat pembuangan limbah oleh masyarakat. Hal ini dapat menyebabkan perubahan kualitas baik fisik, kimia dan biologi  perairan situ. Untuk itu perlu dilakukan penelitian terhadap kualitas fisik, kimia dan biologi perairan Situ Lebak Wangi agar diperoleh informasi mengenai kualitas perairannya sehingga dapat disosialisasikan kepada masyarakat di sekitarnya nilai penting konservasi, pengelolaan dan pemanfaatan situ tersebut. Hasil pengukuran sifat fisik dan kimia air menunjukkan bahwa suhu di perairan Situ Lebak Wangi masih memenuhi baku mutu air kelas 1, nilai total padatan terlarut perairan Situ masih di bawah ambang batas baku mutu yang dipersyaratkan, nilai kecerahan di perairan Situ Lebak Wangi berkisar antara 67,17 – 80,83 cm dengan nilai rata-rata 74,46 cm, nilai pH perairan danau lebih rendah dari perairan sungai, yaitu berkisar antara 6,60–8-80. Pengukuran DO menunjukkan bahwa di perairan danau konsumsi oksigennya lebih tinggi, sedangkan hasil BOD5 menunjukkan bahwa perairan Situ Lebak Wangi sudah tercemar oleh bahan organik mudah urai (BOD5). Nilai daya hantar listrik berkisar antara 112,0 – 118,0 µhos/cm. Hasil analisa kualitas air Situ Lebak Wangi secara keseluruhan menunjukkan bahwa perairan tersebut tidak layak untuk dijadikan sebagai air baku, karena mengandung bakteri patogen Salmonella-Shigella yang merupakan penyebab thypus dan kolera. </strong></p><p>                                                          </p><p><strong><em>Keata Kunci </em></strong> - kualitas fisik, kimia dan biologi; Situ Lebak Wangi; Perairan; Baku mutu air</p></div><br clear="all" /><p> </p><p><em>Abstract</em> - <strong>Situ Lebak Wangi is a place located in the Bogor area, and was originally used as a water reservoir during the rainy season to increase groundwater supply. Currently, Situ Lebak Wangi is used as a waste disposal site by the community. This can lead to changes in the quality of both physical, chemical and biological waters there. Therefore, research on the physical, chemical and biological qualities of waters of Situ Lebak Wangi to obtain information about the quality of the waters so that it can be socialized to the community around the importance of conservation, management and utilization of the site. The result of measurement of physical and chemical properties of water shows that the temperature in Situ Lebak Wangi waters still meet the water quality standard class 1, the total dissolved solids of waters Situ is still below the required quality standard threshold, the brightness value in Situ Lebak Wangi waters ranges between 67, 17 - 80.83 cm with an average rating of 74.46 cm, the pH value of the lake waters lower than river waters, which ranged from 6.60-8-80. Measurements of DO indicate that in lake waters oxygen consumption is higher, whereas BOD5 results show that waters Situ Lebak Wangi already contaminated by organic material easily explained (BOD5). The electrical conductivity values range from 112.0 - 118.0 μhos / cm. The result of Situ Lebak Wangi water quality analysis as a whole shows that the water is not feasible to serve as raw water, because it contains Salmonella-Shigella pathogen bacteria which is the cause of thypus and cholera.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong><strong> - </strong><em>physical quality, chemistry and biology, </em><em>Situ Lebak Wangi, </em><em>Waters, Water quality standards</em><strong><em></em></strong></p>


Author(s):  
Munay Abdulqadir Alteerah ◽  
Mohammad Noor Amal Azmai ◽  
Hishamuddin Omar ◽  
Ahmad Ismail

Microalgae have valuable contributions in carbon dioxide sequestration. There are no much investigations about motivation of mix microalgae productivity in outdoor cultures. This study aims to evaluate microalgae biomass production in outdoor mesocosms under different weather conditions. The experiment was done in Tilapia pond in the hatchery of fisheries of Universiti Putra Malaysia. Weather parameters were recorded daily. Microalgae seeds were obtained from Tilapia pond effluent and added to eight floating aerated mesocosms. Mesocosms were divided into four treatments. Two g triple supper phosphate: 20g Urea were used as fertilizers. Physical and chemical conditions, microalgae primary productivity and biomass, and species composition were measured every two days. Three cycles were categorized as mix, wet and dry cycles based on weather recording scores. Water quality parameters in Treatments and controls cultures showed significant variations. Primary production variables were higher in the fertilized non-sheltered mesocosms (treatment 1). Productivity variables were lower in the dry cycle and higher in the mix cycle. The highest value of fixed CO2 was (3.2) mg/L/d in treatment 1 in the mix cycle, while the lowest value was (0.11) mg/L/d in treatment 3 and control 1 in dry cycle. Changes in weather patterns are seen in the light and temperature values. Microalgae biomass was lower in dry weather conditions because of effect of high air temperature. Weather conditions and different treatments significantly influenced microalgae species composition, due to the sensitivity in some of them to different light intensities. Chlorophytes were the most abundant due to their ability to adapt with different culture conditions.


2007 ◽  
Vol 4 (5) ◽  
pp. 853-868 ◽  
Author(s):  
Y. Huot ◽  
M. Babin ◽  
F. Bruyant ◽  
C. Grob ◽  
M. S. Twardowski ◽  
...  

Abstract. Probably because it is a readily available ocean color product, almost all models of primary productivity use chlorophyll as their index of phytoplankton biomass. As other variables become more readily available, both from remote sensing and in situ autonomous platforms, we should ask if other indices of biomass might be preferable. Herein, we compare the accuracy of different proxies of phytoplankton biomass for estimating the maximum photosynthetic rate (Pmax) and the initial slope of the production versus irradiance (P vs. E) curve (α). The proxies compared are: the total chlorophyll a concentration (Tchla, the sum of chlorophyll a and divinyl chlorophyll), the phytoplankton absorption coefficient, the phytoplankton photosynthetic absorption coefficient, the active fluorescence in situ, the particulate scattering coefficient at 650 nm (bp(650)), and the particulate backscattering coefficient at 650 nm (bbp(650)). All of the data (about 170 P vs. E curves) were collected in the South Pacific Ocean. We find that when only the phytoplanktonic biomass proxies are available, bp(650) and Tchla are respectively the best estimators of Pmax and α. When additional variables are available, such as the depth of sampling, the irradiance at depth, or the temperature, Tchla is the best estimator of both Pmax and α.


2019 ◽  
Vol 31 ◽  
Author(s):  
Santiago Andrés Echaniz ◽  
Alicia María Vignatti

Abstract Aim The Central Pampa of Argentina has three recognized phytogeographic regions that arise due to the decrease in rainfall towards the west. The area has numerous lakes that are mainly temporary, with hydroperiods that relate to climatic cycles, although some of them have changed due to anthropogenic influence. Some of these lakes have been studied with special reference to zooplankton, but information on their physical and chemical aspects is scarce. Consequently, managing and evaluating the anthropogenic effects on these ecosystems is challenging. The objective of this study was to explore the limnological characteristics of lakes in different regions in the Central Pampa that experience different anthropic influences. Methods Ten lakes were sampled seasonally (January, April, July, and October) during 2007. In situ measurements included transparency, pH, temperature, and dissolved oxygen concentration, and 2-L water samples were collected to determine salinity, ion composition, suspended solids, nutrient concentration, and phytoplankton chlorophyll- a concentration. Results Salinity ranged from 0.32-136.72 g L-1, with Na+ being the dominant ion in nine lakes and Cl- and HCO3- predominating in the higher- and lower-salinity lakes respectively. Nutrient concentrations were high (total Kjeldahl nitrogen: 7.97-34.69 mg L-1; total phosphorous: 4.07-14.82 mg L-1), and all lakes were hypertrophic. We determined three lake classes: i) lakes transformed from low-salinity lakes into hypersaline ones through human inactivation of the fluvial system that fed it; ii) mesosaline temporary lakes lacking fish, with low concentrations of chlorophyll-a and influenced by agricultural activities, and iii) subsaline and hyposaline lakes, highly modified by urban sewage, converted in permanent lakes (which allowed fish fauna development) and with reduced water transparency (due to high concentrations of phytoplankton chlorophyll-a). Conclusions The chemical diversity of the studied lakes is low, and their predominance of Na+ and Cl- indicated that evaporation and crystallization control the water chemistry. Additionally, this study showed the consequences of the anthropic impact, which alter water chemical composition, trophic structure and, thus, the ecological characteristics of lakes.


2020 ◽  
Vol 12 (1) ◽  
pp. 163 ◽  
Author(s):  
Shuying Bai ◽  
Jixi Gao ◽  
Deyong Sun ◽  
Meirong Tian

Water transparency represented by the Secchi disk depth (Zsd) plays an important role in understanding water ecology environment variations, especially for optically complex and shallow lake waters. In this study, using in situ measured remote sensing reflectance (Rrs), diffuse attenuation coefficient (Kd), and Zsd data collected in Lake Taihu (China), a regional algorithm for estimating Kd from Rrs was designed, and the semi-analytical model proposed by Lee et al. (2015) (hereafter called Lee_2015 model) was refined using a linear scaling correction for remote sensing of Zsd. The results showed that a good agreement between the derived Kd and in situ measured data (mean absolute percentage error (MAPE) = 26% for Kd(490); MAPE < 5% for Kd at 443, 555, and 660 nm). The in situ Rrs-derived Zsd results using the refined Lee_2015 model compared well with the in situ measured Zsd (R2 = 0.72 and MAPE = 36%), which was an obvious improvement over the Lee_2015 model in our study region. Subsequently, the refined Lee_2015 model was applied to the geostationary ocean color imager (GOCI) observations between 2012 and 2018 to yield the spatial and temporal variations of water transparency in the Lake Taihu waters. The long-term mean distribution of Zsd revealed that water transparency values in the northeastern Lake Taihu were generally higher than those in the southwest part. Monthly climatological Zsd patterns suggested that the Zsd distributions had large temporal variability, and distinct monthly patterns of Zsd existed in different subregions of Lake Taihu. The significant interannual variations of Zsd in Lake Taihu are probably affected by a combination of the water column stability mainly caused by wind, water temperature, human activity, and riverine discharge. The present study can provide a new approach for quantifying water visibility and serve for water-color remote sensing of optically complex and highly turbid waters.


2017 ◽  
Vol 22 (1) ◽  
pp. 15
Author(s):  
Ulung Jantama Wisha ◽  
Try Al Tanto ◽  
Ilham Ilham

 Physical construction of Bayur bay coastal area as a port was followed by a variety of environmental issues, both physical degradation of the natural environment, biology reduction and an increase in social problems, directly affect to water quality decreasing in the coastal Bayur Bay. This study aims to determine the concentration distribution of physical and chemical parameters and their influence to water conditions on the east and west season. The method used is descriptive method (data taken by in situ and laboratory analysis), determining the location of sampling points based on purposive sampling method and tide prediction by NAOtide software. The results of field survey and laboratory measurements analysed using statistical method. The speed of sea currents on the east season ranged from 3,48 to 24,9 cm.s-1, while in the West season flow rate ranged from 1,4 to 57,7 cm.s-1. Rainfall in East Season ranged from 0-45 mm and The intensity of rainfall in West Season ranged from 0-30 mm. Sea-surface temperatures in the Eastern season range between 26,2- 31.5 °C, while in the west season SST range from 24,3 to 30,5°C. Dissolve oxygen concentration in the east season range from 4,3 to 6,1 mg.L-1, while the west monsoon conditions range from 4,1 to 6,4 mg.L-1. The pH values ranged from 7,4 to 8,1 in the Eastern season and ranged from 7,12 to 8,27 in the West season. Bayur Bay water quality conditions is not much different from its value range on the west and east season and influencing each other. Keywords: Bayur Bay, Seasons, SST, Statistical method


2010 ◽  
Vol 61 (3) ◽  
pp. 781-788 ◽  
Author(s):  
A. Yamamoto ◽  
M. D. Short ◽  
B. van den Akker ◽  
N. J. Cromar ◽  
H. J. Fallowfield

This study compared the nitrification potential of two separate Waste Stabilisation Ponds (WSPs) operating under differing physical and chemical conditions. In order to probe the nitrification potential of each system, the oxidation of ammonium and also the intermediate product nitrite was assessed using both in situ and laboratory micro-scale incubations. The role of sediment in determining the nitrification potential of the two WSPs was also investigated. Results from laboratory microcosm incubations revealed a competent and strikingly similar nitrification potential for both WSPs in spite of their differing nitrogen and organic loadings, and also suggested a significant role for sediment in WSP nitrogen cycling. Results from in situ field experiments identified biomass uptake to be the dominant nitrogen removal mechanism in natural pond environments. Other aspects of WSP nitrogen cycling are also discussed.


2007 ◽  
Vol 4 (2) ◽  
pp. 707-745 ◽  
Author(s):  
Y. Huot ◽  
M. Babin ◽  
F. Bruyant ◽  
C. Grob ◽  
M. S. Twardowski ◽  
...  

Abstract. Probably because it is a readily available ocean color product, almost all models of primary productivity use chlorophyll as their index of phytoplankton biomass. As other variables become more readily available, both from remote sensing and in situ autonomous platforms, we should ask if other indices of biomass might be preferable. Herein, we compare the accuracy of different proxies of phytoplankton biomass for estimating the maximum photosynthetic rate (Pmax) and the initial slope of the production versus irradiance (P vs. E) curve (α). The proxies compared are: the total chlorophyll a concentration (Tchla, the sum of chlorophyll a and divinyl chlorophyll), the phytoplankton absorption coefficient, the phytoplankton photosynthetic absorption coefficient, the active fluorescence in situ, the particulate scattering coefficient at 650 nm (bp (650)), and the particulate backscattering coefficient at 650 nm (bbp (650)). All of the data (about 170 P vs. E curves) were collected in the South Pacific Ocean. We find that when only the phytoplanktonic biomass proxies are available, bp (650) and Tchla are respectively the best estimators of Pmax and alpha. When additional variables are available, such as the depth of sampling, the irradiance at depth, or the temperature, Tchla becomes the best estimator of both Pmax and α. From a remote sensing perspective, error propagation analysis shows that, given the current algorithms errors for estimating bbp(650), Tchla remains the best estimator of Pmax.


Sign in / Sign up

Export Citation Format

Share Document