scholarly journals Re-Evaluation of Chromium Doped Alumina for Dosimetric Applications

2021 ◽  
Vol 58 (1) ◽  
pp. 15-22
Author(s):  
E. Einbergs ◽  
A. Zolotarjovs ◽  
I. Bite ◽  
J. Cipa ◽  
V. Vitola ◽  
...  

AbstractMany medical examinations involve ionizing radiation. Although the range of available dosimeters is rather wide, their linearity and chemical stability are limited. Recently, there has been a growing interest in new, improved dosimetric materials for emerging applications in medicine and other fields, such as sterilisation of consumer goods and medical instruments, irradiation of seeds, chemical agents and others.One of the classical dosimeters is carbon-doped alumina (Al2O3:C) – a well-established and widely used material for personal and industrial dosimeter with a range of great properties, such as high sensitivity, wide linearity range and relative ease of production and handling. However, the demand for reliable dosimeters in a high-dose range is still only partially fulfilled, and alumina doped with chromium ions (Al2O3:Cr) can be a promising candidate.In this study, we explored alumina doped with chromium porous microparticles synthesized with a sol-gel method as a possible high dose dosimeter and evaluated its thermostimulated luminescence signal, dose response with two irradiation sources and measured long-time fading. It was found that although the TSL signal was quite complex (consisting of two main peaks above room temperature) and the long-term fading was significant (around 50 % in the span of 30 days), with sufficient optimisation the material could be used as a high-dose dosimeter for X-ray and beta irradiation. Wide high dose linearity range, physical and chemical characteristics, as well as low production costs and ease of synthesis make chromium (III) doped alumina a compelling candidate for applicability in various medical and industry fields.

2017 ◽  
Vol 59 (1) ◽  
pp. 81-85
Author(s):  
Jianjun Zhang ◽  
Hao Zeng ◽  
Chun Liu ◽  
Chao Li ◽  
Sude Ma ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gertraud Eylert ◽  
Reinhard Dolp ◽  
Alexandra Parousis ◽  
Richard Cheng ◽  
Christopher Auger ◽  
...  

Abstract Background Multipotent mesenchymal stromal/stem cell (MSC) therapy is under investigation in promising (pre-)clinical trials for wound healing, which is crucial for survival; however, the optimal cell dosage remains unknown. The aim was to investigate the efficacy of different low-to-high MSC dosages incorporated in a biodegradable collagen-based dermal regeneration template (DRT) Integra®. Methods We conducted a porcine study (N = 8 Yorkshire pigs) and seeded between 200 and 2,000,000 cells/cm2 of umbilical cord mesenchymal stromal/stem cells on the DRT and grafted it onto full-thickness burn excised wounds. On day 28, comparisons were made between the different low-to-high cell dose groups, the acellular control, a burn wound, and healthy skin. Result We found that the low dose range between 200 and 40,000 cells/cm2 regenerates the full-thickness burn excised wounds most efficaciously, followed by the middle dose range of 200,000–400,000 cells/cm2 and a high dose of 2,000,000 cells/cm2. The low dose of 40,000 cells/cm2 accelerated reepithelialization, reduced scarring, regenerated epidermal thickness superiorly, enhanced neovascularization, reduced fibrosis, and reduced type 1 and type 2 macrophages compared to other cell dosages and the acellular control. Conclusion This regenerative cell therapy study using MSCs shows efficacy toward a low dose, which changes the paradigm that more cells lead to better wound healing outcome.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 963
Author(s):  
Ekaterina S. Dolinina ◽  
Elena V. Parfenyuk

Powerful antioxidant α-lipoic acid (LA) exhibits limited therapeutic efficiency due to its pharmacokinetic properties. Therefore, the purpose of this work was to evaluate the ability of silica-based composites of LA as well as its amide (lipoamide, LM), as new oral drug formulations, to control their release and maintain their therapeutic concentration and antioxidant activity in the body over a long time. The composites synthesized at different sol–gel synthesis pH and based on silica matrixes with various surface chemistry were investigated. The release behavior of the composites in media mimicking pH of digestive fluids (pH 1.6, 6.8, and 7.4) was revealed. The effects of chemical structure of the antioxidants, synthesis pH, surface chemistry of the silica matrixes in the composites as well as the pH of release medium on kinetic parameters of the drug release and mechanisms of the process were discussed. The comparative analysis of the obtained data allowed the determination of the most promising composites. Using these composites, modeling of the release process of the antioxidants in accordance with transit conditions of the drugs in stomach, proximal, and distal parts of small intestine and colon was carried out. The composites exhibited the release close to the zero order kinetics and maintained the therapeutic concentration of the drugs and antioxidant effect in all parts of the intestine for up to 24 h. The obtained results showed that encapsulation of LA and LM in the silica matrixes is a promising way to improve their bioavailability and antioxidant activity.


2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


2021 ◽  
Vol 21 (10) ◽  
pp. 5143-5149
Author(s):  
Zhen Zhu ◽  
Wang-De Lin

This paper reports on a nanocomposite synthesized by sol–gel procedure comprising graphene sheets with hollow spheres of titanium dioxide (G/HS-TiO2) with varying weight percentages of graphene for the purpose of humidity sensors. The surface morphology of the nanocomposite was characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The structural properties were examined using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The response to 12–80% RH at room temperature exhibited sensitivity (S = 135). However, the relative humidity range of 12–90% at room temperature exhibited higher sensitivity (S = 557). Sensors fabricated using the proposed nanocomposite exhibited high sensitivity to humidity, high stability, rapid response times, and rapid recovery times with hysteresis error of less than 1.79%. These results demonstrate the outstanding potential of his material for the monitoring of atmospheric humidity. This study also sought to elucidate the mechanisms underlying humidity sensing performance.


2021 ◽  
Author(s):  
Zuzanna Kabacińska ◽  
Alida Timar-Gabor ◽  
Benny Guralnik

<p>Thermally activated processes can be described mathematically by the Arrhenius equation. The Meyer-Neldel Rule (MNR), or compensation law, linearly relates the pre-exponent term to the logarithm of the excitation enthalpy for processes that are thermally driven in an Arrhenian manner. This empirical rule was observed in many areas of materials science, in physics, chemistry, and biology. In geosciences it was found to uphold in hydrogen diffusion (Jones 2014a) and proton conduction (Jones 2014b) in minerals.</p><p>Trapped charge dating methods that use electron spin resonance (ESR) or optically or thermally stimulated luminescence (OSL and TL) are based on the dose-dependent accumulation of defects in minerals such as quartz and feldspar. The thermal stability of these defects in the age range investigated is a major prerequisite for accurate dating, while the accurate determination of the values of the trap depths and frequency factors play a major role in thermochronometry applications. </p><p>The correlation of kinetic parameters for diffusion has been very recently established for irradiated oxides (Kotomin et al. 2018). A correlation between the activation energy and the frequency factor that satisfied the Meyer–Neldel rule was reported when the thermal stability of [AlO<sub>4</sub>/h<sup>+</sup>]<sup>0</sup> and [TiO<sub>4</sub>/M<sup>+</sup>]<sup>0</sup> ESR signals in quartz was studied as function of dose (Benzid and Timar-Gabor 2020). Here we compiled the optically stimulated luminescence (OSL) data published so far in this regard, and investigated experimentally the thermal stability of OSL signals for doses ranging from 10 to 10000 Gy in sedimentary quartz samples. We report a linear relationship between the natural logarithm of the preexponent term (the frequency factor) and the activation energy E, corresponding to a Meyer-Neldel energy of 45 meV, and a deviation from first order kinetics in the high dose range accompanied by an apparent decrease in thermal stability. The implications of these observations and the atomic and physical mechanisms are currently studied.</p><p> </p><p><strong>References</strong></p><p>Benzid, K., Timar Gabor, A. 2020. The compensation effect (Meyer–Neldel rule) on [AlO<sub>4</sub>/h<sup>+</sup>]<sup>0</sup> and [TiO<sub>4</sub>/M<sup>+</sup>]<sup>0</sup> paramagnetic centers in irradiated sedimentary quartz. <em>AIP Advance</em>s 10, 075114.</p><p>Kotomin, E., Kuzovkov, V., Popov, A. I., Maier, J., and Vila, R. 2018. Anomalous kinetics of diffusion-controlled defect annealing in irradiated ionic solids. <em>J. Phys. Chem. A</em> 122(1), 28–32</p><p>Jones, A. G. (2014a), Compensation of the Meyer-Neldel Compensation Law for H diffusion in minerals, <em>Geochem. Geophys. Geosyst.</em>, 15, 2616–2631</p><p>Jones, A. G. (2014b), Reconciling different equations for proton conduction using the Meyer-Neldel compensation rule, <em>Geochem. Geophys. Geosyst</em>., 15, 337–349</p>


2018 ◽  
Vol 89 (2) ◽  
pp. 416-425
Author(s):  
William Giovanni Cortés-Ortiz ◽  
Alexander Baena-Novoa ◽  
Carlos Alberto Guerrero-Fajardo

Sign in / Sign up

Export Citation Format

Share Document