scholarly journals Damage Detection of the Rod in the Crossflow Using Surrogate-Based Modelling

2021 ◽  
Vol 58 (5) ◽  
pp. 50-62
Author(s):  
S. Upnere ◽  
J. Auzins

Abstract An effective and accurate methodology is developed to create an inverse surrogate model for the mass reduction analysis of the rod in the rod bundle inserted in the crossflow. The performance of two surrogate modelling approaches has been evaluated. These models are the Response Surface Method and Legendre polynomial approximations. The relationship between dominant frequencies, support stiffness and rod mass derived from Computational Fluid Dynamics simulations is used as input data for approximations. The selection of sample points is implemented with a new type of orthogonal design. The results have shown that the proposed methodology can reliably replace the finite volume model and drastically reduce computational time.

2011 ◽  
Vol 8 (2) ◽  
pp. 2739-2782 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. Hydrological Ensemble Prediction System (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of members) of a HEPS configured with 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Center for Medium-range Weather Forecasts (ECMWF). Here, the selection of the most relevant members is proposed using a Backward greedy technique with k-fold cross-validation, allowing an optimal use of the information. The methodology draws from a multi-criterion score that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 445
Author(s):  
Anna Malakian ◽  
Zuo Zhou ◽  
Lucas Messick ◽  
Tara N. Spitzer ◽  
David A. Ladner ◽  
...  

Colloidal fouling can be mitigated by membrane surface patterning. This contribution identifies the effect of different pattern geometries on fouling behavior. Nanoscale line-and-groove patterns with different feature sizes were applied by thermal embossing on commercial nanofiltration membranes. Threshold flux values of as-received, pressed, and patterned membranes were determined using constant flux, cross-flow filtration experiments. A previously derived combined intermediate pore blocking and cake filtration model was applied to the experimental data to determine threshold flux values. The threshold fluxes of all patterned membranes were higher than the as-received and pressed membranes. The pattern fraction ratio (PFR), defined as the quotient of line width and groove width, was used to analyze the relationship between threshold flux and pattern geometry quantitatively. Experimental work combined with computational fluid dynamics simulations showed that increasing the PFR leads to higher threshold flux. As the PFR increases, the percentage of vortex-forming area within the pattern grooves increases, and vortex-induced shielding increases. This study suggests that the PFR should be higher than 1 to produce patterned membranes with maximal threshold flux values. Knowledge generated in this study can be applied to other feature types to design patterned membranes for improved control over colloidal fouling.


2014 ◽  
Vol 68 (7) ◽  
Author(s):  
Marek Dománski ◽  
Joanna Karcz ◽  
Marcelina Bitenc

AbstractThe current study presents the results of a numerical simulation of hydrodynamics in an agitated vessel equipped with an eccentric HE 3 impeller. CFD (computational fluid dynamics) simulations were carried out using ANSYS 14.0 software. Time-dependent simulations of turbulent flow were carried out using the SAS-SST (scale adaptive simulation-shear stress transport) method coupled with the SM (sliding mesh) method. The results of the calculations are presented as contours of velocity in different cross-sections of the agitated vessel, as well as profiles of components of velocity vector and turbulence kinetic energy and its dissipation rate. The iso-surface of vorticity, which shows the region of possible vortex existence, is also presented. A numerically obtained data set of impeller power number was used to calculate the averaged impeller power number. This value was compared with the experimental data with good results. The relationship between impeller position and fluctuation of the impeller power number was also analysed.


2011 ◽  
Vol 15 (11) ◽  
pp. 3307-3325 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. Hydrological Ensemble Prediction Systems (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of the number of hydrological members) that can be achieved with a HEPS configured using 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Centre for Medium-range Weather Forecasts (ECMWF). Here, Backward Greedy Selection (BGS) is proposed to assess the weight that each model must represent within a subset that offers similar or better performance than a reference set of 800 hydrological members. These hydrological models' weights represent the participation of each hydrological model within a simplified HEPS which would issue real-time forecasts in a relatively short computational time. The methodology uses a variation of the k-fold cross-validation, allowing an optimal use of the information, and employs a multi-criterion framework that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).


Author(s):  
S.X. Li ◽  
Z.H. Wang ◽  
D.M. Li ◽  
W.W. Duan ◽  
S. Mei ◽  
...  

Author(s):  
А. I. Grabovets ◽  
V. P. Kadushkina ◽  
S. А. Kovalenko

With the growing aridity of the climate on the Don, it became necessary to improve the methodology for conducting the  breeding of spring durum wheat. The main method of obtaining the source material remains intraspecific step hybridization. Crossings were performed between genetically distant forms, differing in origin and required traits and properties. The use of chemical mutagenesis was a productive way to change the heredity of genotypes in terms of drought tolerance. When breeding for productivity, both in dry years of research and in favorable years, the most objective markers were identified — the size of the aerial mass, the mass of grain per plant, spike, and harvest index. The magnitude of the correlation coefficients between the yield per unit area and the elements of its structure is established. It was most closely associated with them in dry years, while in wet years it decreased. Power the correlation of the characteristics of the pair - the grain yield per square meter - the aboveground biomass averaged r = 0.73, and in dry years it was higher (0.91) than in favorable ones (0.61 - 0.70) , between the harvest and the harvest index - r = 0.81 (on average). In dry years, the correlation coefficient increased to 0.92. Research data confirms the greatest importance of the mass of grain from one ear and the plant in the formation of grain yield per unit area in both dry and wet years. In dry years, the correlation coefficient between yield and grain mass per plant was on average r = 0.80; in favorable years, r = 0.69. The relationship between yield and grain mass from the ear was greater — r = 0.84 and r = 0.82, respectively. Consequently, the breeding significance of the aboveground mass and the productivity of the ear, as a criterion for the selection of the crop, especially increases in the dry years. They were basic in the selection.


2018 ◽  
Vol 2 (2) ◽  
pp. 137
Author(s):  
Muhammad Abi Berkah Nadi

Radin Inten II Airport is a national flight in Lampung Province. In this study using the technical analysis stated preference which is the approach by conveying the choice statement in the form of hypotheses to be assessed by the respondent. By using these techniques the researcher can fully control the hypothesized factors. To determine utility function for model forecasting in fulfilling request of traveler is used regression analysis with SPSS program. The analysis results obtained that the passengers of the dominant airport in the selection of modes of cost attributes than on other attributes. From the result of regression analysis, the influence of independent variable to the highest dependent variable is when the five attributes are used together with the R square value of 8.8%. The relationship between cost, time, headway, time acces and service with the selection of modes, the provision that states whether or not there is a decision. The significance of α = 0.05 with chi-square. And the result of Crame's V test average of 0.298 is around the middle, then the relationship is moderate enough.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 53-61
Author(s):  
Ben Chie Yen

Urban drainage models utilize hydraulics of different levels. Developing or selecting a model appropriate to a particular project is not an easy task. Not knowing the hydraulic principles and numerical techniques used in an existing model, users often misuse and abuse the model. Hydraulically, the use of the Saint-Venant equations is not always necessary. In many cases the kinematic wave equation is inadequate because of the backwater effect, whereas in designing sewers, often Manning's formula is adequate. The flow travel time provides a guide in selecting the computational time step At, which in turn, together with flow unsteadiness, helps in the selection of steady or unsteady flow routing. Often the noninertia model is the appropriate model for unsteady flow routing, whereas delivery curves are very useful for stepwise steady nonuniform flow routing and for determination of channel capacity.


Sign in / Sign up

Export Citation Format

Share Document