scholarly journals The Worldwide Search for the New Mutations in the RNA-Directed RNA Polymerase Domain of SARS-CoV-2

2021 ◽  
Vol 44 (1) ◽  
pp. 87-94
Author(s):  
Siarhei A. Dabravolski ◽  
Yury K. Kavalionak

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, responsible for the current pandemic outbreak. In total, 200 genomes of the SARS-CoV-2 strains from four host organisms have been analyzed. To investigate the presence of the new mutations in the RNA-directed RNA Polymerase (RdRp) of SARS-CoV-2, we analyzed sequences isolated from different hosts, with particular emphasis on human isolates. We performed a search for the new mutations of the RdRp proteins and study how those newly identified mutations could influence RdRp protein stability. Our results revealed 25 mutations in Rhinolophus sinicus, 1 in Mustela lutreola, 6 in Homo sapiens, and none in Mus musculus RdRp proteins of the SARS-CoV-2 isolates. We found that P323L is the most common stabilising radical mutation in human isolates. Also, we described several unique mutations, specific for studied hosts. Therefore, our data suggest that new and emerging variants of the SARS-CoV-2 RdRp have to be considered for the development of effective therapeutic agents and treatments.

2020 ◽  
Author(s):  
Jae Hyun Park ◽  
Yuri Choi ◽  
Chul-Woo Lim ◽  
Ji-Min Park ◽  
Shin-Hye Yu ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 2019 (COVID-19). No treatment is available. Micro-RNAs (miRNAs) in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are potential novel therapeutic agents because of their ability to regulate gene expression by inhibiting mRNA. Thus, they may degrade the RNA genome of SARS-CoV-2. EVs can transfer miRNAs to recipient cells and regulate conditions within them. MSC-EVs harbor major therapeutic miRNAs that play important roles in the biological functions of virus-infected host cells. Here, we examined their potential impact on viral and immune responses. MSC-EVs contained 18 miRNAs predicted to interact directly with the 3’ UTR of SARS-CoV-2. These EVs suppressed SARS-CoV-2 replication in Vero E6 cells. In addition, five major miRNAs suppressed virus activity in a luciferase reporter assay by binding the 3’ UTR. MSC-EVs showed strong regenerative effects and potent anti-inflammatory activity which may prevent lethal cytokine storms. We confirmed that EVs regulated inflammatory responses by several cell types, including human brain cells that express the viral receptor ACE2, suggesting that the brain may be targeted by SARS-CoV-2. miRNAs in MSC-EVs have several advantages as therapeutic agents against SARS-CoV-2: 1) they bind specifically to the viral 3’ UTR, and are thus unlikely to have side effects; 2) because the 3’ UTR is highly conserved and rarely mutates, MSC-EV miRNAs could be used against novel variants arising during viral replication; and 3) unique cargoes carried by MSC-EVs can have diverse effects, such as regenerating damaged tissue and regulating immunity.


2019 ◽  
Vol 8 (30) ◽  
Author(s):  
Rafael R. Barata ◽  
João L. S. G. Vianez-Júnior ◽  
Márcio R. T. Nunes

The fungus Mucor irregularis is a causative agent of mucormycosis. The transcriptome analysis of the isolated M. irregularis strain C3B revealed the presence of an RNA polymerase domain of a negative-polarity RNA virus. In this work, we describe the gene ontology-based annotation of the Mucor irregularis transcriptome, which includes a putative RNA mycovirus.


2020 ◽  
Vol 20 (18) ◽  
pp. 1900-1907
Author(s):  
Kasturi Sarkar ◽  
Parames C. Sil ◽  
Seyed Fazel Nabavi ◽  
Ioana Berindan-Neagoe ◽  
Cosmin Andrei Cismaru ◽  
...  

The global spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes COVID-19 has become a source of grave medical and socioeconomic concern to human society. Since its first appearance in the Wuhan region of China in December 2019, the most effective measures of managing the spread of SARS-CoV-2 infection have been social distancing and lockdown of human activity; the level of which has not been seen in our generations. Effective control of the viral infection and COVID-19 will ultimately depend on the development of either a vaccine or therapeutic agents. This article highlights the progresses made so far in these strategies by assessing key targets associated with the viral replication cycle. The key viral proteins and enzymes that could be targeted by new and repurposed drugs are discussed.


Diagnosis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giuseppe Lippi ◽  
Camilla Mattiuzzi ◽  
Brandon M. Henry

Abstract The worldwide burden of coronavirus disease 2019 (COVID-19) is still unremittingly prosecuting, with nearly 300 million infections and over 5.3 million deaths recorded so far since the origin of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic at the end of the year 2019. The fight against this new highly virulent beta coronavirus appears one of the most strenuous and long challenges that humanity has ever faced, since a definitive treatment has not been identified so far. The adoption of potentially useful physical preventive measures such as lockdowns, social distancing and face masking seems only partially effective for mitigating viral spread, though efficacy and continuation of such measures on the long term is questionable, due to many social and economic reasons. Many COVID-19 vaccines have been developed and are now widely used, though their effectiveness is challenged by several aspects such as low uptake and limited efficacy in some specific populations, as well as by continuous emergence of new mutations in the SARS-CoV-2 genome, accompanying the origin and spread of new variants, which in turn may contribute to further decrease the effectiveness of current vaccines and treatments. This article is hence aimed to provide an updated picture of SARS-CoV-2 variants and mutations that have emerged from November 2019 to present time (i.e., early December 2021).


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1738
Author(s):  
Alesia A. Levanova ◽  
Eeva J. Vainio ◽  
Jarkko Hantula ◽  
Minna M. Poranen

Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2′-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.


2021 ◽  
Author(s):  
Agustina P. Bertolin ◽  
Florian Weissmann ◽  
Jingkun Zeng ◽  
Viktor Posse ◽  
Jennifer C. Milligan ◽  
...  

SummaryThe coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication-transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologs in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer (FRET)-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified 3 novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.


2020 ◽  
Vol 65 (1) ◽  
pp. e01652-20
Author(s):  
Keivan Zandi ◽  
Franck Amblard ◽  
Katie Musall ◽  
Jessica Downs-Bowen ◽  
Ruby Kleinbard ◽  
...  

ABSTRACTCoronavirus disease 2019 (COVID-19) is a serious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or CoV-2). Some reports claimed certain nucleoside analogs to be active against CoV-2 and thus needed confirmation. Here, we evaluated a panel of compounds and identified novel nucleoside analogs with antiviral activity against CoV-2 and HCoV-OC43 while ruling out others. Of significance, sofosbuvir demonstrated no antiviral effect against CoV-2, and its triphosphate did not inhibit CoV-2 RNA polymerase.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
F Ferron ◽  
B Canard

Abstract Large-genome Nidoviruses and Nidovirus-like viruses reside at the current boundary of largest RNA genome sizes. They code for an unusually large number of gene products matching that of small DNA viruses (e.g. DNA bacteriophages). The order of appearance and distribution of enzyme genes along various virus families (e.g. helicase and ExoN) may be seen as an evolutionary marker in these large RNA genomes lying at the genome size boundary. A positive correlation exists between (+)RNA virus genome sizes and the presence of the RNA helicase and the ExoN domains. Although the mechanistic basis of the presence of the helicase is still unclear, the role of the ExoN activity has been linked to the existence of an RNA synthesis proofreading system. In large Nidovirales, ExoN is bound to a processive replicative RNA-dependent RNA polymerase (RdRp) and corrects mismatched bases during viral RNA synthesis. Over the last decade, a view of the overall process has been refined in Coronaviruses, and in particular in our lab (Ferron et al., PNAS, 2018). We have identified genetic markers of large RNA genomes that we wish to use to data-mine currently existing metagenomic datasets. We have also initiated a collaboration to sequence and explore new viromes that will be searched according to these criteria. Likewise, we have a collection of purified viral RdRps that are currently being used to generate RNA synthesis products that will be compared to existing NGS datasets of cognate viruses. We will be able to have an idea about how much genetic diversity is possibly achievable by viral RdRp (‘tunable fidelity’) versus the detectable diversity (i.e. after selection in the infected cell) that is actually produced.


Sign in / Sign up

Export Citation Format

Share Document