Quantification of the titanium content in metallodrug-exposed tumor cells using HR-CS AAS

Metallodrugs ◽  
2014 ◽  
Vol 1 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Julia Schur ◽  
Cesar M. Manna ◽  
Edit Y. Tshuva ◽  
Ingo Ott

AbstractHigh-resolution continuum source atomic absorption spectroscopy (HR-CS AAS) is a valuable analytical technique for metal quantification because of its high sensitivity and selectivity for metal atoms as well as its improved background correction mode. However, the quantification of metals in biological materials, e.g. cell lysates, is still challenging because of matrix effects and other experimental complications. A method to quantify the titanium content of tumor cells exposed to titanium-based drugs was developed using HR-CS AAS. This method allows the quantification of titanium in cell suspensions in the low µg L

2020 ◽  
Vol 35 (11) ◽  
pp. 2606-2619
Author(s):  
Raúl Garde ◽  
Flávio V. Nakadi ◽  
Esperanza García-Ruiz ◽  
Martín Resano

Two different multi-signal calibration approaches are examined and their benefits for solving matrix effects for HR CS GFMAS demonstrated.


Bioanalysis ◽  
2020 ◽  
Vol 12 (24) ◽  
pp. 1739-1756
Author(s):  
Yuchen Sun ◽  
Shin-ichiro Nitta ◽  
Kosuke Saito ◽  
Ryuta Hosogai ◽  
Keiko Nakai ◽  
...  

Background: Ion-pairing reverse-phase LC coupled with high-resolution mass spectrometry (IP-LC/HRMS) has gained attention in oligonucleotide therapeutic bioanalyses owing to its high sensitivity and selectivity. However, optimization and validation of IP-LC/HRMS-based methods are rare. The objective of this study is the development of a sensitive and reproducible IP-LC/HRMS-based bioanalytical method using clinically approved mipomersen as a model for antisense oligonucleotides. Materials & methods/results: Mipomersen was extracted from rat plasma using Clarity OTX SPE and quantified by IP-LC/HRMS. The calibration range was 0.5–250.0 ng/ml. The developed method met the general regulatory criteria for accuracy, precision, carry-over, selectivity, matrix effect and dilution integrity. Conclusion: A highly sensitive and reliable method for mipomersen measurement with potential antisense oligonucleotide bioanalysis applications has been developed.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Author(s):  
Klaus-Ruediger Peters

Topographic ultra high resolution can now routinely be established on bulk samples in cold field emission scanning electron microscopy with a second generation of microscopes (FSEM) designed to provide 0.5 nm probe diameters. If such small probes are used for high magnification imaging, topographic contrast is so high that remarkably fine details can be imaged on 2DMSO/osmium-impregnated specimens at ribosome surfaces even without a metal coating. On TCH/osmium-impregnated specimens topographic resolution can be increased further if the SE-I imaging mode is applied. This requires that beam diameter and metal coating thickness be made smaller than the SE range of ~1 nm and background signal contributions be reduced. Subnanometer small probes can be obtained (only) at high accelerating voltages. Subnanometer thin continuous metal films can be produced under the following conditions: self-shadowing effect between metal atoms must be reduced through appropriate deposition techniques and surface mobility of metal atoms must be diminished through high energy sputtering and/or specimen cooling.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


Sign in / Sign up

Export Citation Format

Share Document