scholarly journals X-ray diffraction study of the elastic properties of jagged spherical CdS nanocrystals

2020 ◽  
Vol 38 (2) ◽  
pp. 271-278
Author(s):  
Pijush Ch. Dey ◽  
Sumit Sarkar ◽  
Ratan Das

AbstractIn this work, jagged spherical CdS nanocrystals have been synthesized by chemical method to study their elastic properties. The synthesized CdS nanocrystal has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The transmission electron microscope images show that the average size of the nanocrystal is 100 nm approximately. X-ray diffraction (XRD) study confirms that the CdS nanocrystals are in cubic zinc blende structure. The size calculated from the XRD is consistent with the average size obtained from the TEM analysis. The XRD data have been analyzed to study the elastic properties of the jagged spherical CdS nanocrystals, such as intrinsic strain, stress and energy density, using WilliamsonHall plot method. Williamson-Hall method and size-strain plot (SSP) have been used to study the individual effect of crystalline size and lattice strain on the peak broadening of the jagged spherical CdS nanocrystals. Size-strain plot (SSP) and root mean square (RMS) strain further confirm the results obtained from W-H plots.

2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


2012 ◽  
Vol 512-515 ◽  
pp. 2019-2022 ◽  
Author(s):  
Xiao Lu Liang ◽  
Xian Hua Wei

Cu2FeSnS4semiconductor nanocrystals with zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+cations have a random distribution in the zincblende unit cell, and the occupancy possibilities are 1/2, 1/4 and 1/4, respectively. Those nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), and UV-Vis-NIR absorption spectroscopy. The Cu2FeSnS4 nanocrystals have an average size of 7.5 nm and a band gap of 0.92 eV.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


2007 ◽  
Vol 124-126 ◽  
pp. 1229-1232 ◽  
Author(s):  
Myoung Seok Sung ◽  
Yoon Bok Lee ◽  
Yong Jin Kim ◽  
Yang Do Kim

Cadmium selenide(CdSe) nanoparticles were prepared in the aqueous solution containing isopropyl alcohol by the ultrasonic irradiation at room temperature. The cadmium chloride (CdCl2) and sodium selenosulfate (Na2SeSO3) were used as the cadmium and selenium source, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption spectra and PL spectra were used to characterize the CdSe nanoparticles. XRD analysis revealed the formation of cubic structure CdSe. TEM images showed aggregated CdSe nanoparticles with the size of nanometer scale. Average size of CdSe nanoparticles were about 3.9, 5.0 and 5.1nm with sonication time of 6, 30 and 40 minutes, respectively. The surface emission became less intensive and shifted to red with increasing irradiation time. This paper presents the effects of ultrasonic on the formation of CdSe nanoparticles and its characteristics.


2012 ◽  
Vol 535-537 ◽  
pp. 2240-2244
Author(s):  
Wei Wei ◽  
Chang Shun Yu ◽  
Shao Jun Wang ◽  
Qing Da An

Nanosized TiO2 particles were synthesized by sol-gel method using ionic liquid as assistant. The samples were characterized by UV-vis diffuse reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM). It was shown that the phase detectable was mainly rutile phase with uniform sphericity and the average size was 10nm. Along with the rise of sintering temperature, grain diameter became bigger. The photocatalytic activities of nanosized TiO2 were evaluated by the reduction yield in the presence of CO2 and water. The result showed that TiO2 catalysts has efficient photocatalytic activities, of which made with [OMIM]BF4 displayed the highest photocatalytic active in the experiment.


1994 ◽  
Vol 346 ◽  
Author(s):  
Carol S. Houk ◽  
Gary A. Burgoine ◽  
Catherine J. Page

ABSTRACTWe have investigated the homogeneity of sol‐gel derived YBa2Cu307‐s from the solution phase to the final product using transmission electron microscopy (TEM), x‐ray diffraction (XRD), and Energy Dispersive X‐ray (EDX) lateral mapping techniques. The starting solutions contain stoichiometric amounts of the metal 2‐(2‐methoxyethoxy)ethoxide components in 2‐(2‐methoxyethoxy)ethanol and appear to be homogeneous by TEM with a uniform distribution of particles having an average size of less than 40 â. Through elemental mapping we see elemental segregation in the high temperature (950 °C) products, which are orthorhombic by XRD. In elemental maps of gel samples fired to 700 °C, which are tetragonal by XRD, we also see elemental inhomogeneity within particles and phase zoning in maps of products from finely ground gels. A comparison of elemental maps and x‐ray diffraction patterns of the products from gel processing and conventional solid state processing is made.


2007 ◽  
Vol 336-338 ◽  
pp. 1676-1678
Author(s):  
Cheng Yun Ning ◽  
Ying Jun Wang ◽  
Xiao Feng Chen ◽  
Jian Dong Ye ◽  
Gang Wu ◽  
...  

In the present study, bioactive functional gradient coatings were prepared using net-energy controlled plasma spraying technology. The microstructure and phases of the bioactive functional gradient coating were examined by means of transmission electron microscope, scanning electron microscopy and X-ray diffraction. The results revealed that: (1) as-sprayed coatings contained a large amount of amorphous phases and some nano-sized HA crystals formed during rapid solidification, (2) surface of the coating was very rough with different-sized micropores, and the gradient layer was much denser which firmly bonded to the substrate without gaps and obvious interface between the coating and the substrate


2015 ◽  
Vol 233-234 ◽  
pp. 513-516 ◽  
Author(s):  
A.P. Safronov ◽  
Galina V. Kurlyandskaya ◽  
S.M. Bhagat ◽  
I.V. Beketov ◽  
A.M. Murzakaev ◽  
...  

Spherical nickel nanoparticles were prepared by the electrical explosion of wire. The as-prepared nanoparticles were modified immediately after fabrication at room temperature in order to provide tunable surface properties with focus on the development of composites filled with nanoparticles. Following liquid modificators were used: hexane, toluene and the solution of polystyrene in toluene. In one case the surface modification by carbon was made in gas phase as a result of hydrocarbon injection. The average size of the nanoparticles was about 50 nm and unit cell parameters were close to 0.351 nm. Detailed characterization was done by X-ray diffraction, transmission electron microscopy, and magnetization measurements. Sphericity was also checked using microwave resonant absorption.


Author(s):  
G. L. Stansfield ◽  
P. V. Vanitha ◽  
H. M. Johnston ◽  
D. Fan ◽  
H. AlQahtani ◽  
...  

The use of the water–oil interface provides significant advantages in the synthesis of inorganic nanostructures. Employing the water–toluene interface, luminescent CdS nanocrystals have been obtained at a relatively modest temperature of 35 ° C. The diameters of the particulates can be varied between 1.0 and 5.0 nm. In addition, we have devised a new method for transferring thin films at the water–toluene interface onto solid substrates. Using this method, thin films consisting of Au and Ag nanocrystals spread over very large areas (square centimetres) are obtained in a single step. These films are directly usable as ingredients of functional devices. We show this by constructing a working amine sensor based on films of Au nanocrystals. The materials obtained have been characterized by X-ray diffraction, scanning and transmission electron microscopy, absorption and emission spectroscopy and charge transport measurements.


Sign in / Sign up

Export Citation Format

Share Document