scholarly journals Process of separating acetonitrile and water using LTTMs as entrainer

2021 ◽  
Vol 23 (4) ◽  
pp. 1-9
Author(s):  
Chengshuai Li ◽  
Wencheng Ma

Abstract New extractive distillation configurations, which use low transition temperature mixtures (LTTMs) as entrainers, have attracted widespread attention among scholars due to their green processes. Furthermore, the design and comparison of different processes can promote the application of new solvents in the future. In this study, two extractive distillation processes, the extractive distillation column (ED) and the extraction dividing wall column (EDW), were selected from previous work. The separation process of acetonitrile (ACN)-water ternary mixtures was studied, and GC3:1(choline chloride/glycolic acid mixture (molar mass 1:3)) and EC2:1((choline chloride/ethylene glycol 1:2 molar mass) were used as entrainers. Minimum consumption energy and the purity of ACN and water were set as the goals, and our sensitivity analysis and economic evaluation results showed that both ED and EDW were effective. As a result, LTTMs can be used in extractive distillation for azeotrope separation.

2014 ◽  
Vol 8 (1) ◽  
pp. 12-18 ◽  
Author(s):  
Lanyi Sun ◽  
Kang He ◽  
Yuliang Liu ◽  
Qiuyuan Wang ◽  
Dingding Wang

In this contribution, a different pressure thermally coupled extractive distillation process has been applied on the separation of propylene and propane with aqueous acetonitrile (ACN) solution as entrainer. The novel distillation pro-cess integration is the combination of different pressure thermally coupled distillation (DPTCD) and extractive distillation (ED). Both the new process and the conventional process have been simulated in Aspen Plus. Sensitivity analysis has been conducted to select an appropriate compression ratio and other operating parameters based on the priority that the propylene product purity is 99.2 wt % and less energy consumption. The influence of the proposed distillation column on energetic and economic aspects is evaluated through intensive comparison against the conventional stand-alone column, and better performance is achieved with up to 46.02% energy saving and close to 9.7% saving in total annual cost (TAC).


2012 ◽  
Vol 14 (3) ◽  
pp. 48-53 ◽  
Author(s):  
Guangzhong Li ◽  
Yang Yu ◽  
Peng Bai

Methanol and acetonitrile form a minimum azeotrope at 336.74 K, which contains methanol 76.89 mas%. The simulation and the experiment to separate the mixture by batch extractive distillation using aniline as entrainer is performed. Based on the experimental and simulative VLE data, aniline is chosen to be the suitable solvent. The sensitivity analysis about the number of stages, the refl ux ratio, the solvent feed stage and the solvent fl ow rate is conducted to obtain the optimal parameters and confi guration of the extractive distillation column with minimal energy requirements. The most appropriate confi guration is 30 theoretical stages. The optimal entrainer feeding stage is 8 with a solvent fl ow rate of 20kg/h and the refl ux ratio of 2.0, respectively. The simulation results show the effect of the main variables on the extractive distillation process. The experiment is carried out to corroborate the feasibility of the separation of methanol-acetonitrile by batch extractive distillation.


Author(s):  
V. M. Raeva ◽  
O. V. Gromova

In this paper, extractive distillation flowsheets for water–formic acid–acetic acid mixtures were designed. Flowsheets not involving preliminary dehydration were considered, and the relative volatilities of the components in the presence of sulfolane were analyzed. The result of extractive distillation depends on the amount of sulfolane. The structure of the flowsheet is determined by the results of the basic ternary mixture extractive distillation. In three-column flowsheets (schemes I, II), water is isolated in the distillate of the extractive distillation column. In the second column, distillation of the formic acid–acetic acid–sulfolane mixture is carried out, yielding formic acid (90 wt %) and acetic acid (80 wt %). The recycled flow is returned to the first column. Dilution of the formic acid–acetic acid–sulfolane mixture with sulfolane (second column of flowsheet II) allows for acids of higher quality (main substance content equal to or more than 98.5 wt %) to be obtained. Flowsheet III includes four columns and two recycling stages. First, the water–formic acid mixture is isolated in the distillate of the extractive distillation column. Then, water and formic acid are separated in a two-column complex by extractive distillation, also with sulfolane. We were carrying out calculations for column working pressure 101.32 and 13.33 kPa. To prevent thermal decomposition of sulfolane, working pressure for regeneration columns was always 13.33 kPa. The extractive distillation column of the basic three-component mixture is the main factor contributing to the total energy consumption for separation (in all schemes).


Author(s):  
Tushar Perkar ◽  
Naitik Choksi ◽  
Chintan Modi ◽  
Milind Joshipura

Abstract Simulation studies of n-heptane/toluene system were performed using Aspen Plus. The comparative study of different entrainers: N-Methyl-2-Pyrrolidone (NMP), Phenol, and Sulfolane for separation of this system was done. Sensitivity analysis was carried out to optimize flowsheets. The criteria to determine the appropriate solvent for the said system included, the total cost calculated by the Aspen Process Economic Analyzer, amount of the solvent consumed, cost of the solvent, and purity obtained during the separation process. For the given system, sulfolane was found to be the appropriate solvent.


2017 ◽  
Vol 142 ◽  
pp. 2636-2641
Author(s):  
Muhammad Afiq Zubir ◽  
Ahmad Nafais Rahimi ◽  
Muhammad Fakhrul Islam Zahran ◽  
Munawar Zaman Shahruddin ◽  
Kamarul Asri Ibrahim ◽  
...  

2017 ◽  
Vol 82 (11) ◽  
pp. 1287-1302 ◽  
Author(s):  
Jelena Vuksanovic ◽  
Nina Todorovic ◽  
Mirjana Kijevcanin ◽  
Slobodan Serbanovic ◽  
Ivona Radovic

The ability of non-toxic and biodegradable deep eutectic solvent (DES) choline chloride + DL-malic acid in mole ratio 1:1, for the breaking of the azeotropes heptane + methanol and toluene + methanol by means of liquid? ?liquid extraction was evaluated. Ternary liquid?liquid equilibrium experiments were performed at 298.15 K and at atmospheric pressure. Densities, viscosities and refractive indices of DES + methanol and water + DES systems were experimentally determined over a wide temperature range and at atmospheric pressure. Additionally, the viscosities of DES + glycerol mixture were - determined at temperatures up to 363.15 K to check how much the addition of glycerol decreases high viscosities of DES. The results indicate that the addition of small amounts of water or glycerol as a third component significantly decreases the viscosity of the investigated deep eutectic solvent. Based on the selectivity and distribution ratio values, the extraction ability of the investigated deep eutectic solvent, in comparison with the conventionally used solvents, yields promising results. Non-random two-liquid (NRTL) and universal quasichemical (UNIQUAC) models were satisfactorily applied for correlation of experimental phase equilibrium data for two ternary mixtures.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Suksun Amornraksa ◽  
Ittipat Subsaipin ◽  
Lida Simasatitkul ◽  
Suttichai Assabumrungrat

Abstract Separation process is very crucial in bioethanol production as it consumes the highest energy in the process. Unlike other works, this research systematically designed a suitable separation process for bioethanol production from corn stover by using thermodynamic insight. Two separation processes, i.e., extractive distillation (case 2) and pervaporation (case 3), were developed and compared with conventional molecular sieve (case 1). Process design and simulation were done by using Aspen Plus program. The process evaluation was done not only in terms of energy consumption and process economics but also in terms of environmental impacts. It was revealed that pervaporation is the best process in all aspects. Its energy consumption and carbon footprint are 60.8 and 68.34% lower than case 1, respectively. Its capital and production costs are also the lowest, 37.0 and 9.88% lower than case 1.


2012 ◽  
Vol 51 (1-3) ◽  
pp. 606-608 ◽  
Author(s):  
Dionísio da Silva Biron ◽  
Camila Cherubini ◽  
Venina dos Santos ◽  
Lucas Gomes ◽  
Andréa Schneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document