scholarly journals Mechanical, thermal and surface properties of polyacrylamide/dextran semi-interpenetrating network hydrogels tuned by the synthesis temperature

2013 ◽  
Vol 11 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Maria Dinu ◽  
Maria Cazacu ◽  
Ecaterina Drăgan

AbstractThe mechanical, rheological, thermal, and surface behaviors of three polyacrylamide/dextran (PAAm/Dx) semi-interpenetrating polymer network (semi-IPN) hydrogels, prepared at 22°C, 5°C and −18°C, were investigated. The results were compared with those obtained on cross-linked PAAm without Dx synthesized under the same conditions. Hydrogels prepared at the lowest temperature were the most mechanically stable. The thermal stability of the semi-IPN hydrogels is slightly lower than the corresponding PAAm gels, irrespective of preparation temperature. The water vapor sorption capacity depended on the presence of Dx as well as preparation temperature, which determines the network morphology.

Author(s):  
Debajyoti Ray ◽  
Prafulla Kumar Sahoo ◽  
Guru Prasad Mohanta

Interpenetrating polymer network (IPN) hydrogel based on polyvinyl alcohol (PVA) networking with polyacrylic acid (PAA), generated insitu, were prepared by without any added crosslinker, using benzoyl peroxide an initiator and sodium chloride (NaCl) as additive. The response of the hydrogels with and without NaCl was observed by studying their swelling behavior, biodegradability and thermal stability. Scanning electron microscopic study revealed that the pores of the prepared IPN were mostly open in presence of NaCl, thus making the hydrogel macroporous. (PVA-co-PAA)/NaCl was found to be more biodegradable than without NaCl. The IPN hydrogel showed comparatively higher swelling at intestinal pH than that of gastric medium and presence of NaCl in the IPN increases the swelling properties in both media. Thermal stability of IPN was affected by copolymerization, due to increasing porosity of the IPN. The prepared nontoxic, hydrophilic IPN hydrogel system holds good for further drug delivery studies in connection to its superswelling and biodegradablity.


Author(s):  
Roopa S. ◽  
Siddaramaiah

The effect of cenosphere content on the performances of polyurethane/polystyrene (PU/PS, 90/10) interpenetrating polymer network (IPN) based green composites have been studied. The PU/PS IPNs have been prepared using castor oil, toluene diisocyanate and styrene. IPN/cenosphere composites have been prepared with different weight fractions viz., 0, 5, 10, 20 and 30 wt % of cenosphere. The prepared IPN composites have been characterized by physico – mechanical, chemical and thermal behavior. The tensile strength of unfilled IPN was 1.79 MPa and a significant improvement in tensile strength (34%) was noticed for 10% cenosphere loaded IPN composite. The swelling behavior of the composites has been studied in different organic solvents. Thermal characteristics of the composites have been measured using differential scanning calorimeter, thermogravimetric analysis and dynamic mechanical analysis (DMA). A slight improvement in thermal stability was noticed for filler loaded specimens. Morphological features of cryo-fractured IPN/cenosphere green composites have been analyzed using SEM.


Soft Matter ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Yifei Xu ◽  
Onkar Ghag ◽  
Morgan Reimann ◽  
Philip Sitterle ◽  
Prithwish Chatterjee ◽  
...  

An interpenetrating polymer network, chlorophyllin-incorporated “smart” hydrogel was synthesized and exhibited enhanced mechanical properties, upper critical solution temperature swelling, and promising visible-light responsiveness.


2021 ◽  
Vol 41 (9) ◽  
pp. 788-798
Author(s):  
Amir Narimani ◽  
Farid Kordnejad ◽  
Prabhjyot Kaur ◽  
Saeed Bazgir ◽  
Mahmood Hemmati ◽  
...  

Abstract The purpose of the present work is to enhance the thermal stability and rheological properties of semi-interpenetrating polymer network (IPN) hydrogel based on partially hydrolyzed polyacrylamide/hydroxypropyl guar (HPAM/HPG) nanocomposite reinforced with graphene oxide (GO), at temperatures (200 and 240 °F) for use in oil recovery applications. FTIR spectra of the IPN nanocomposite hydrogels revealed interactions of GO with HPAM/HPG chains. An increase in the viscosity is also observed from the rheological study. Moreover, IPN and its nanocomposite hydrogels exhibited non-Newtonian behavior. The decline of viscosity of IPN nanocomposite hydrogels was observed with an increase in the temperature from 200 to 240 °F but was still higher than IPN hydrogel without GO. Dispersion of GO through the HPAM/HPG hydrogel matrix was evaluated by SEM morphology and electrical conductivity. The IPN nanocomposite hydrogels showed high viscosity stability, thermal stability, and flow activation energy as compared to IPN hydrogel without GO. Therefore, the addition of 0.1 wt.% of GO to the HPAM/HPG matrix is suitable to create a cross-linked polymer solution with improved properties which may be beneficial for use in oil recovery applications.


2017 ◽  
Vol 54 (4) ◽  
pp. 708-714
Author(s):  
Cristian Barbu Mic ◽  
Marcela Mihai ◽  
Cristian Dragos Varganici ◽  
Simona Schwarz ◽  
Dan Scutaru ◽  
...  

This study follows the possibility to tune the thermal stability of some CaCO3/polymer composites by crystal growth from supersaturated solutions controlled by polymer structure or by using nonstoichiometric polyelectrolyte complexes (NPECs). As the ratio between the organic and inorganic parts in the composites controls the Ca2+/polymer network crosslinking density, the CaCO3/polymer weight ratio was kept constant at 50/1, varying the initial concentration of the polyanions solutions (0.05 or 0.06 wt.%), the NPECs molar ratio , n+/n- (0.2 or 0.4), or the inorganic precursors concentration (0.25 or 0.3 M). Poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid) (PSA) and chondroitin-4-sulfate (CSA) were used as polyanions. Some NPEC dispersions, prepared with the same polyanions and poly(allylamine hydrochloride) (PAH), were also used for calcium carbonate crystallization. The characteristics of the prepared composites were investigated by scanning electron microscopy (SEM), flow particle image analysis (FPIA), particles charge density (CD), zeta-potential (ZP). The thermal stability of the composite particles was investigated as compared to bare CaCO3 microparticles prepared at the same initial inorganic concentrations.


2018 ◽  
Vol 31 (1) ◽  
pp. 145
Author(s):  
Fathel S. Matty ◽  
Zainab M. MohiALDeen

     PVA and chitosan biodegradable, non-toxic, biocompatible polymers convenient for use in drug release. In this study polyvinyl alcohol (PVA) and chitosan (CS) hydrogels crosslinked with glutaraldehyde (GA) with different ratio morphology and structure characterization interpenetrating polymer network (IPN).They were investigated by Fourier transmission infrared spectroscopy (FTIR), scanning electron microscope (SEM), UV-Visible spectrophotometer,swelling of hydrogel and drug release were studied by changing crosslinking ratio and PH.  


2019 ◽  
Vol 10 (4) ◽  
pp. 473-485 ◽  
Author(s):  
Audrey Cuvellier ◽  
Robrecht Verhelle ◽  
Joost Brancart ◽  
Bram Vanderborght ◽  
Guy Van Assche ◽  
...  

The differences in reactivity and thermal stability of the stereoisomers define the thermal properties and responsiveness of the reversible polymer network.


Sign in / Sign up

Export Citation Format

Share Document