Granulation of activated sludge in a laboratory upflow sludge blanket reactor

2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Petra Pagáčová ◽  
Miloslav Drtil ◽  
Katarína Galbová

AbstractThe creation of anoxic granulated biomass has been monitored in a laboratory USB (Upflow Sludge Blanket) reactor with the volume of 3.6 L. The objective of this research was to verify the possibilities of post-denitrification of residual NO3-N concentrations in treated wastewater (denitrification of 10-20 mg L−1 NO3-N) and to determine the maximum hydraulic and mass loading of the granulated biomass reactor. G-phase from biodiesel production and methanol were both tested as external organic denitrification substrates. The ratio of the organic substrate COD to NO3-N was 6. Only methanol was proven as a suitable organic substrate for this kind of reactor. However, the biomass adaptation to the substrate took over a week. The cultivation of anoxic granulated biomass was reached at hydraulic loading of over 0.35 m h−1. The size of granules was smaller when compared with results found and described in literary reports (granules up to 1 mm); however, settling properties were excellent and denitrification was deemed suitable for the USB reactor. Sludge volume indexes of granules ranged from 35-50 mL g−1 and settling rates reached 11 m h−1. Maximum hydraulic and mass loadings in the USB reactor were 0.95 m3 m−2 h−1 and 6.6 kg m−3 d−1. At higher loading levels, a wash-out of the biomass occurred.

1993 ◽  
Vol 27 (3-4) ◽  
pp. 311-314 ◽  
Author(s):  
Aaron B. Margolin ◽  
Charles P. Gerba ◽  
Kenneth J. Richardson ◽  
Jaime E. Naranjo

Nucleic acid hybridization provides a rapid non-cell culture method for the detection of enteric viruses in water. The purpose of this work was to compare the detection of naturally occurring enteroviruses by cell culture with their detection by a poliovirus gene probe in various types of water samples. Samples of activated sludge effluent, tertiary treated wastewater (activated sludge, filtration and passage through reverse osmosis), ground water, surface water and tidal river water were processed through 1 MDS Virozorb filters to concentrate any naturally occurring virus. Viruses were eluted from the filters with pH 9.5 beef extract and reduced in volume by flocculation to 20-30 ml. These concentrates were then assayed in the BGM cell line by the cytopathogenic effects (CPE) method and by a poliovirus cDNA probe (base pairs 115-7440) labeled with 32P. A total of 233 samples were assayed in this manner. In slightly more than 93% of the samples gene probe and cell culture yielded the same results. Of these samples 36 were positive by gene probe and 28 by cell culture assay. Positive samples for gene probe were confirmed by treatment with NaOH or RNAse and then reprobed. Samples demonstrating CPE upon primary passage were confirmed positive by subsequent passage of cell lysate on a new monolayer of BGM cells. Ten samples were positive by gene probe and negative by cell culture, and 4 samples were negative by gene probe and positive by cell culture.


1998 ◽  
Vol 37 (12) ◽  
pp. 121-129 ◽  
Author(s):  
S. Isaacs ◽  
Terry Mah ◽  
S. K. Maneshin

A novel method is described to automatically estimate several key parameters affecting denitrification in activated sludge processes: the nitrate concentration, the denitrification capacity, and the maximum (substrate unlimited) and actual denitrification rates. From these, the concentration of active denitrifying microorganisms and the quality of available organic substrate pool can be estimated. Additionally, a modification of the method allows the determination of the efficacy of various carbon substrates to enhance denitrification, and this can be used to determine optimal dosing rates of an external carbon source. The method is based on measurements of either fluorescence or redox potential (ORP) in an isolated mini-reactor, the Biological Activity Meter (BAM), situated in the anoxic zone of the wastewater treatment plant. Advantages of the method are that it is in situ, operating at the same temperature as in the measured anoxic zone, requires no pumps or pipes for mixed liquor sampling, consumes little or no reagents, and uses measurement signals which are instantaneous and low maintenance, one of which provides a direct measure of biological activity.


2021 ◽  
Vol 11 (4) ◽  
pp. 1889 ◽  
Author(s):  
Agnieszka Micek ◽  
Krzysztof Jóźwiakowski ◽  
Michał Marzec ◽  
Agnieszka Listosz ◽  
Tadeusz Grabowski

The results of research on the efficiency and technological reliability of domestic wastewater purification in two household wastewater treatment plants (WWTPs) with activated sludge are presented in this paper. The studied facilities were located in the territory of the Roztocze National Park (Poland). The mean wastewater flow rate in the WWTPs was 1.0 and 1.6 m3/day. In 2017–2019, 20 series of analyses were done, and 40 wastewater samples were taken. On the basis of the received results, the efficiency of basic pollutant removal was determined. The technological reliability of the tested facilities was specified using the Weibull method. The average removal efficiencies for the biochemical oxygen demand in 5 days (BOD5) and chemical oxygen demand (COD) were 66–83% and 62–65%, respectively. Much lower effects were obtained for total suspended solids (TSS) and amounted to 17–48%, while the efficiency of total phosphorus (TP) and total nitrogen (TN) removal did not exceed 34%. The analyzed systems were characterized by the reliability of TSS, BOD5, and COD removal at the level of 76–96%. However, the reliability of TN and TP elimination was less than 5%. Thus, in the case of biogenic compounds, the analyzed systems did not guarantee that the quality of treated wastewater would meet the requirements of the Polish law during any period of operation. This disqualifies the discussed technological solution in terms of its wide application in protected areas and near lakes, where the requirements for nitrogen and phosphorus removal are high.


2020 ◽  
Vol 324 ◽  
pp. 162-170
Author(s):  
Kenzhegul Bolatkhan ◽  
Assem K. Sadvakasova ◽  
Bolatkhan K. Zayadan ◽  
Ardak B. Kakimova ◽  
Fariza K. Sarsekeyeva ◽  
...  

1990 ◽  
Vol 22 (7-8) ◽  
pp. 311-312 ◽  
Author(s):  
T. Ebers ◽  
W. Bischofsberger

In the Federal Republic of Germany, the barely treated wastewater of about 7 million people is percolated into the soil. Groundwater quality has now become a major concern, and investigations into soil filtration as a means of eliminating pollution from household wastewater have been started. Experiments with six laboratory lysimeters (diameter = 0.4 m, height = 1.8 m) are described. Three lysimeters were filled with slightly silty sand, the other three with fine gravel sand. All lysimeters have been in operation for about two years. Initially they were loaded with mechanically treated wastewater from a municipal treatment plant and later with effluent from a septic tank. Hydraulic loading varied from 0.5 to 31 cm/d. Results showed good efficiency for fine gravel sand (aerobic conditions) in removal of BOD5 (98.0 to 99.2 %), COD (88.0 to 92.8 %) and Kjeldahl nitrogen (90.0 to 91.3 %). Elimination of phosphate ranged from 5.7 to 86.0 %. Slightly silty sand (anaerobic conditions) showed the best results in elimination of phosphate (86.0 to 99.3 %) and relatively good elimination rates were achieved for BOD5 (65.0 to 98.2 %) and COD (about 76 %). Elimination of Kjeldahl nitrogen ranged from 39.6 to 68.4 %. The results for the two soils can be summarized as follows: Fine gravel sand: high hydraulic loading capacity (aerobic conditions); high elimination rates of BOD5 and COD; high elimination rates of ammonium by nitrification; very low elimination of total phosphate. Slightly silty sand: low hydraulic loading capacity and, despite this, anaerobic conditions; high elimination rates of BOD5 and barely inferior elimination rates of COD in comparison to fine gravel sand; low elimination rates of ammonium; very high elimination rates of total phosphate.


2019 ◽  
Vol 79 (4) ◽  
pp. 656-667 ◽  
Author(s):  
Ana María Leiva ◽  
Adrián Albarrán ◽  
Daniela López ◽  
Gladys Vidal

Abstract The aim of this study was to evaluate the phytotoxicity of wastewater treated with horizontal subsurface flow (HSSF) constructed wetlands (CWs) and activated sludge (AS) system using disinfection treatment such chlorination and ultraviolet (UV) system. To assess the impact of the reuse of different effluents (HSSF-Cl, HSSF-UV, AS-Cl and AS-UV), bioassays using seeds of Raphanus sativus (R. sativus) and Triticum aestivum (T. aestivum), were performed on both Petri dishes and soil. Different treated wastewater concentrations were varied (6.25%, 12.5%, 25%, 50% and 100%) and the percentage of germination inhibition (PGI), percentage of epicotyl elongation (PEE) and germination index (GI) were determined. Positive effects (PGI and PEE <0% and GI >80%) of HSSF-Cl, HSSF-UV, AS-Cl and AS-UV effluents on germination and epicotyl elongation of R. sativus and T. aestivum were observed in Petri dishes bioassays. However, toxic effects of HSSF-Cl, HSSF-UV and AS-Cl on seeds germination and epicotyl elongation of both plant species were detected in soil samples (PGI and PEE >0% and GI <80%). Only R. sativus seeds to be irrigated with AS-UV achieved GI values above 86% for all concentrations evaluated. These results indicated that AS-UV effluent had a positive effect on seeds germination and can be recommended for treated wastewater reuse in agricultural irrigation.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 193-200 ◽  
Author(s):  
D. Brandt ◽  
C. Sieker ◽  
W. Hegemann

The sorption-denitrification-P-removal (S-DN-P) process combines biological excess P-removal (BEPR) and denitrification using immobilized biomass. The accumulation of denitrifying polyP organisms is achieved by sequencing anaerobic/anoxic conditions. The immobilized biomass is in alternating contact with primary treated wastewater (anaerobic sorption-phase) and nitrified wastewater (denitrification phase). In the sorption phase, P-release takes place and readily biodegradable organic substrate, e.g. volatile fatty acid, is taken up and stored by polyP accumulating organisms (PAO). In addition to this, other organic matter is physically/chemically adsorbed in the biofilm structures. In the denitrification phase, the biomass denitrifies the stored and adsorbed organic substrate and, at the same time, P-uptake and polyP formation occurs. This paper presents results of investigations at laboratory and half-technical scale. At laboratory scale different types of carriers were tested regarding their suitability for the S-DN-P-process. In half-technical scale a biofilter and a moving bed reactor (MBR) were tested. In the biofilter a stable removal of nitrate and phosphate was achieved. However, it was not possible to achieve similar results in the MBR process. Especially the release and uptake of phosphate showed no clear tendency although the uptake of acetate was good. Reasons for this could be the accumulation of glycogen accumulating organisms which impair the metabolism of PAO.


2013 ◽  
Vol 50 (3) ◽  
pp. 128-136
Author(s):  
Yuichiro WAKIYA ◽  
Toru TURUHASHI ◽  
Norihiro TAKAYANAGI ◽  
Daisuke URABE ◽  
Hirofumi KAWAHARA ◽  
...  

2015 ◽  
Vol 71 (7) ◽  
pp. 971-979 ◽  
Author(s):  
Thomas Nogaj ◽  
Andrew Randall ◽  
Jose Jimenez ◽  
Imre Takacs ◽  
Charles Bott ◽  
...  

This study describes the development of a modified activated sludge model No.1 framework to describe the organic substrate transformation in the high-rate activated sludge (HRAS) process. New process mechanisms for dual soluble substrate utilization, production of extracellular polymeric substances (EPS), absorption of soluble substrate (storage), and adsorption of colloidal substrate were included in the modified model. Data from two HRAS pilot plants were investigated to calibrate and to validate the proposed model for HRAS systems. A subdivision of readily biodegradable soluble substrate into a slow and fast fraction were included to allow accurate description of effluent soluble chemical oxygen demand (COD) in HRAS versus longer solids retention time (SRT) systems. The modified model incorporates production of EPS and storage polymers as part of the aerobic growth transformation process on the soluble substrate and transformation processes for flocculation of colloidal COD to particulate COD. The adsorbed organics are then converted through hydrolysis to the slowly biodegradable soluble fraction. Two soluble substrate models were evaluated during this study, i.e., the dual substrate and the diauxic models. Both models used two state variables for biodegradable soluble substrate (SBf and SBs) and a single biomass population. The A-stage pilot typically removed 63% of the soluble substrate (SB) at an SRT <0.13 d and 79% at SRT of 0.23 d. In comparison, the dual substrate model predicted 58% removal at the lower SRT and 78% at the higher SRT, with the diauxic model predicting 32% and 70% removals, respectively. Overall, the dual substrate model provided better results than the diauxic model and therefore it was adopted during this study. The dual substrate model successfully described the higher effluent soluble COD observed in the HRAS systems due to the partial removal of SBs, which is almost completely removed in higher SRT systems.


Sign in / Sign up

Export Citation Format

Share Document