Analysis and improvement of stability of pepsin-solubilized collagen from skin of carp (Cyprinus carpio)

2012 ◽  
Vol 66 (7) ◽  
Author(s):  
Rui Duan ◽  
Jun-Jie Zhang ◽  
Kunihiko Konno ◽  
Mei-Hua Wu ◽  
Jing Li ◽  
...  

AbstractPepsin is widely used for the extraction of pepsin-solubilized collagens (PSC) from many resources. PSC-A and PSC-P were prepared from carp skin using 0.1 mol L−1 acetic acid and 0.02 mol L−1 Na2HPO4 (pH 7.2) as the dialysis solution, respectively. SDS-PAGE patterns showed PSC-A and PSC-P as type I collagens, as well as acid soluble collagen (ASC). When incubated at 40°C, no degradation was observed for ASC, but PSC-A and PSC-P were degraded into short peptides, showing lower stability than ASC. The results indicate that pepsin remaining in the PSCs resulted in their degradation, which was confirmed by the inhibition using pepstatin. This research revealed the behavior of the remaining pepsin in pepsin-solubilized collagens and an approach to the PSC stability improvement was proposed. Chromatography profiles showed that new PSC prepared by the improved method had almost the same stability as ASC.

2011 ◽  
Vol 236-238 ◽  
pp. 2926-2934 ◽  
Author(s):  
Li Li Chen ◽  
Li Zhao ◽  
Hua Liu ◽  
Run Feng Wu

Pepsin-soluble collagen (PSC) was successfully extracted from the skin of Amiurus nebulosus. The skin of Amiurus nebulosus was immersed in 0.3 mol/L acetic acid (1: 20, m: V) for 6 h at 37°C, while pepsin was added, at a level of 5000U/g dosage of defatted skin. The maximal yield of the collagen was 97.44%, which was higher than that of acid-soluble collagen (ASC) at 62.05%. Some properties of pepsin-soluble collagens from the skin of Amiurus nebulosus were characterized. Amino acid composition and SDS-PAGE suggested that the collagen might be classified as type I collagen. Moreover, FTIR investigations showed the existence of helical arrangements in PSC of Amiurus nebulosus skin of collagen. There is a possibility to use Amiurus nebulosus skin collagen as an alternative source of collagen for industrial purposes and subsequently it may maximize the economical value of the fish.


Biotecnia ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 109-116
Author(s):  
Celia Olivia García-Sifuentes ◽  
Julio Cesar Zamorano-Apodaca ◽  
Marcel Martinez-Porchas ◽  
Susana Maria Scheuren-Acevedo ◽  
Miguel Angel Mazorra-Manzano

Fish by-products consisting of skin, bones, or scales are collagen sources. Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) mixed by-products derived from different fish species were extracted and evaluated. The properties evaluated for both collagens were chemical composition, amino acid- and SDS-PAGE- protein profiles, Fourier transform infrared spectroscopy (FTIR), denaturation temperature (Tmax), enthalpy (ΔH), and solubility. The ASC and PSC registered a protein content of 48.56 and 38.80 %, respectively. From the total amino acids detected, hydroxyproline accounted for 7 % and 6 % for ASC and PSC, respectively. The electrophoretic profile showed the presence of the type I collagen bands (α1, α2, β, and γ), whereas FTIR spectrum showed the presence of diverse collagen functional groups (Amide A, B, I, II, and III) for both extracted types, and demonstrated that the extraction process did not affect the collagen´s triple-helical structure. The Tmax of ASC and PSC were 38.27 and 38.07° C, respectively, whereas ΔH were 0.64 and 0.33 J g-1. The lowest solubility was registered at pH 5 for ASC and pH 9 for PSC. The caractheristics of the collagen extracted, indicated that a mixture of by-products from different species could be an alternative for their reutilization by the local markets.


1959 ◽  
Vol 24 (6) ◽  
pp. 618
Author(s):  
W G Banfield ◽  
D C Brindley

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3133-3133
Author(s):  
Alessandra Balduini ◽  
Vittorio Abbonante ◽  
Shinobu Matsuura ◽  
Vittorio Rosti ◽  
Katya Ravid

Abstract Controlling platelet function is central to management of various pathologies, including Primary Myelofibrosis (PMF), which is associated with increased incidence of thrombosis and cardiovascular disease. In recent studies we showed that the matrix cross-linking enzyme, Lysyl Oxidase (LOX) is elevated in platelets and megakartocytes of myelofibrotic mice, and transgenic upregulation of LOX increases platelet and megakaryocyte adhesion to monomeric type I collagen (preferred by alpha2β1 collagen receptors), and augments propensity for in vivo thrombosis. Here, we examined the relevance of these findings to human disease, by first determining platelet LOX level, as well as platelet and megakaryocyte adhesion to collagen using samples derived from PMF patients and matching controls. In analyzing 10 PMF platelet samples (5 males and 5 females; 6 JAK2V617F; 4 CALR mutations; age range 30-55; PMF grade 1-3), we found a nearly 20 fold upregulation of LOX expression compared to matching healthy controls (p<0.001). Intriguingly, there was a significant increase in adhesion (plt/mm2) and spreading (pixel2) of PMF platelets relative to control on monomeric, pepsinated acid soluble collagen (PSCI) (p<0.05), while no differences were observed between the samples on native triple helical acid soluble collagen type I collagen (ASCI). To examine the role of LOX in this phenotype, we treated control and PMF-derived human megakaryocytes, differentiated from peripheral blood CD34+ cells, grown in presence or not of LOX inhibitor, β-aminopropionitrile (BAPN) from day 2 of culture. Our preliminary data, based on a cohort of 2 controls and 5 PMF samples, demonstrated that although on ASCI megakaryocyte adhesion is not altered by BAPN treatment both in CTRL and PMF derived megakaryocytes, on PSCI the adhesion of PMF derived megakaryocytes was reduced by about a 50% by BAPN treatment, while the adhesion of CTRL derived MKs was not significantly affected. Taken together, we identified LOX level to be upregulated in human PMF platelets and megakaryocytes, and LOX activity to be important for PMF cells adhesion to collagen. These newly identified properties are highly relevant to megakaryocyte adhesion to the niche, and to platelet activation in PMF. Disclosures No relevant conflicts of interest to declare.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 597
Author(s):  
Junde Chen ◽  
Guangyu Wang ◽  
Yushuang Li

Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the “salting out” effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.


2018 ◽  
Vol 21 (3) ◽  
pp. 513
Author(s):  
Bagus Fajar Pamungkas ◽  
Supriyadi Supriyadi ◽  
Agnes Murdiati ◽  
Retno Indrati

Characteristics of collagen are influenced by the source of raw materials and extraction methods used. The aim of this research was to characterize the acid- and pepsin-soluble collagens from the dry scales of the striped snakehead (Channa striatus). Collagen was extracted using to methods including 0.5 M acetic acid and 0.1% pepsin. The yield of acid soluble collagen (KLA-SH) and pepsin soluble collagen (KLP-SH) were 0.98% and 1.94%, respectively. KLA-SH and KLP-SH contained glycine as the major amino acid and had high imino acid group content i.e 226 and 230 residues/1.000 residues, respectively. FTIR spectra of KLA-SH and KLP-SH showed that of the structure of collagen could be maintained in the form of triple helix structure. KLA-SH and KLP-SH consisted of α1- and α2-chain, β-chain, and γ-chain and is suggested as type I collagen.


2020 ◽  
Author(s):  
Yaoyao Zhu ◽  
Shijuan Shan ◽  
Huaping Zhao ◽  
Rongrong Liu ◽  
Hui Wang ◽  
...  

Abstract Background: Interferon (IFN) regulatory factors (IRFs), as transcriptional regulatory factors, play important roles in regulating the expression of type I IFN and IFN stimulated genes (ISGs) in innate immune responses. In addition, they participate in cell growth and development and regulate oncogenesis. Results: In the present study, the cDNA sequence of IRF10 in common carp (Cyprinus carpio L.) was characterized (abbreviation, CcIRF10). The predicted protein sequence of CcIRF10 shared 52.7-89.2% identity with other teleost IRF10s and contained a DNA-binding domain (DBD), a nuclear localization signal (NLS) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF10 had the closest relationship with IRF10 of Ctenopharyngodon idella. CcIRF10 transcripts were detectable in all examined tissues, with the highest expression in the gonad and the lowest expression in the head kidney. CcIRF10 expression was upregulated in the spleen, head kidney, foregut and hindgut upon polyinosinic:polycytidylic acid (poly I:C) and Aeromonas hydrophila stimulation and induced by poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs) of C. carpio. In addition, overexpression of CcIRF10 was able to decrease the expression of the IFN and IFN stimulated genes PKR and ISG15. Conclusions: These results indicate that CcIRF10 participates in antiviral and antibacterial immunity and negatively regulates the IFN response, which provides new insights into the IFN system of C. carpio.


2019 ◽  
Vol 81 (2) ◽  
Author(s):  
Mala Nurilmala ◽  
Shita Fauzi ◽  
Dian Mayasari ◽  
Irmanida Batubara

Tuna skin, a byproduct of the fish processing industry, is used as an alternative collagen source to replace bovine and porcine products. This study aimed to extract collagen from tuna skin with acetic acid, and investigated the antioxidant activity. Collagen extraction was carried out through a pretreatment process, defatted with butyl alcohol, and soaking in acetic acid to extract the Acid Soluble Collagen (ASC). The effect of concentration of sodium hydroxide and soaking time on the non-collagenous protein removed were measured, and evaluated. The yield and antioxidant activity of each sample were evaluated and the best result was determined by ANOVA. The highest yield of collagen was 3.18% based on dry weight reached at the treatment with sodium hydroxide 0.2 M and acetic acid 1 M. The different treatments did not result in any significant differences in the spectrum of amide A, B, I, II and III which are the characteristics spectra of collagen. Based on the electrophoretic pattern, tuna skin collagen has two  chains (1 and 2), and one β chain. Therefore, it is classified as type I collagen. The main amino acids were glycine and proline. In addition, the strongest antioxidant activity was found in the sample treated with sodium hydroxide 0.05 M and acetic acid 1 M treatment with IC50 value of 0.45 mg/mL. This study is the first to report on antioxidant activity from fish collagen (not hydrolysate or peptide products).


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 617
Author(s):  
Manuel J. Seixas ◽  
Eva Martins ◽  
Rui L. Reis ◽  
Tiago H. Silva

With the worldwide increase of fisheries, fish wastes have had a similar increase, alternatively they can be seen as a source of novel substances for the improvement of society’s wellbeing. Elasmobranchs are a subclass fished in high amounts, with some species being mainly bycatch. They possess an endoskeleton composed mainly by cartilage, from which chondroitin sulfate is currently obtained. Their use as a viable source for extraction of type II collagen has been hypothesized with the envisaging of a biomedical application, namely in biomaterials production. In the present work, raw cartilage from shark (Prionace glauca) and ray (Zeachara chilensis and Bathyraja brachyurops) was obtained from a fish processing company and submitted to acidic and enzymatic extractions, to produce acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). From all the extractions, P. glauca PSC had the highest yield (3.5%), followed by ray ASC (0.92%), ray PSC (0.50%), and P. glauca ASC (0.15%). All the extracts showed similar properties, with the SDS-PAGE profiles being compatible with the presence of both type I and type II collagens. Moreover, the collagen extracts exhibited the competence to maintain their conformation at human basal temperature, presenting a denaturation temperature higher than 37 °C. Hydrogels were produced using P. glauca PSC combined with shark chondroitin sulfate, with the objective of mimicking the human cartilage extracellular matrix. These hydrogels were cohesive and structurally-stable at 37 °C, with rheological measurements exhibiting a conformation of an elastic solid when submitted to shear strain with a frequency up to 4 Hz. This work revealed a sustainable strategy for the valorization of fisheries’ by-products, within the concept of a circular economy, consisting of the use of P. glauca, Z. chilensis, and B. brachyurops cartilage for the extraction of collagen, which would be further employed in the development of hydrogels as a proof of concept of its biotechnological potential, ultimately envisaging its use in marine biomaterials to regenerate damaged cartilaginous tissues.


2019 ◽  
Vol 22 (3) ◽  
pp. 441-452
Author(s):  
Mega Safithri ◽  
Kustiariyah Tarman ◽  
Pipih Suptijah ◽  
Neni Widowati

Waste of parang parang fish (Chirocentrus dorab) skin can be used as a source of collagen. Collagen isolation can be done chemically by the Acid Soluble Collagen (ASC) method. The objective of this research was to isolate collagen with ASC method and characterize their physicochemical. Collagen isolation consisted of pretreatment and hydrolysis with acids. The pretreatment used NaOH 0.1 M for 12 hours, while hydrolysis used acetic acid 0.5 M. Pretreatment results indicated that the concentration of non-collagen protein was 0.1243 mg/mL, while the yield collagen was 2.61%. The collagen had the viscosity of 6.50 cP, the denaturation temperature of 4°C, the transition temperature of 77.30°C, and the melting temperature of 153.90°C. The obtained collagen also had pH of 6.25. The fourier transform infrared (FTIR) spectra analysis showed the collagen contained amide A (3425.58), B (2924.09), I (1647.21), II (1543.05), and III (1246.02) (cm-1). The collagen also contained glycine (26.69%), proline (12.24%) and alanine (9.51%).


Sign in / Sign up

Export Citation Format

Share Document