imino acid
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 5)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 57 (6) ◽  
pp. 178-188
Author(s):  
Thị Mộng Thu Trương ◽  
Đỗ Quỳnh Nguyễn ◽  
Thanh Trúc Trần ◽  
Thị Minh Thủy Lê

Nghiên cứu điều kiện tiền xử lý và chiết tách collagen từ da cá lóc bằng pepsin đã được thực hiện. Kết quả cho thấy da cá lóc được xử lý với 10% butyl alcohol trong 72 giờ thì hàm lượng lipid còn lại thấp nhất là 15,3%. Collagen từ da cá lóc được chiết tách với 0,45% pepsin trong 24 giờ cho hiệu suất thu hồi 13,7% và độ hòa tan cực đại ở pH  1 - 4 và nồng độ NaCl từ 0,2 - 0,6 M. Bên cạnh đó, phổ FTIR cho thấy mối quan hệ chặt chẽ giữa số bước sóng trong vùng amide I và vùng amide III đặc biệt là sự ổn định của cấu trúc xoắn ba, cho thấy collagen từ da cá lóc có đầy đủ nhóm chức năng của collagen loại I. Collagen có màu sáng với giá trị L* là 62,4 và hàm lượng imino acid là 204 (đơn vị/1000 đơn vị). Kết quả nghiên cứu cho thấy có thể sử dụng pepsin để thay thế hoá chất nhằm giảm thiểu lượng hoá chất thải ra môi trường, tận dụng da cá lóc như nguồn nguyên liệu để sản xuất collagen.


Author(s):  
Eduardo J. Patriarca ◽  
Federica Cermola ◽  
Cristina D’Aniello ◽  
Annalisa Fico ◽  
Ombretta Guardiola ◽  
...  

Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1188
Author(s):  
Thi Mong Thu Truong ◽  
Van Muoi Nguyen ◽  
Thanh Truc Tran ◽  
Thi Minh Thuy Le

The isolation of acid-soluble collagen (ASC) from by-products of snakehead fish (Channa striata), including skin and the mixture of skin and scale, has been investigated. The recovery yield of fish skin ASC (13.6%) was higher than ASC from fish skin and scale (12.09%). Both ASCs were identified as type I collagen and showed maximal solubility at pH 2. Collagen samples from the mixture of skin and scale had higher imino acid content (226 residues/1000 residues) and lower wavenumber in the amide I and amide III region (1642 and 1203 cm−1, respectively) than the fish skin ASC (the imino acid content was 220 residues/1000 residues and the wavenumber in the amide I and amide III were 1663 and 1206 cm−1, respectively. The difference scanning calorimeter (DSC) showed higher thermal stability in ASC from the mixture of skin and scale (Td of 35.78 °C) than fish skin ASC (34.21 °C). From the result, the denaturation temperature of ASC had a close relationship with the content of imino acid as well as with the degradation of α-helix in amide I and III. These results suggest that collagen could be obtained effectively from snakehead fish by-products and has potential as a realistic alternative to mammalian collagens.


2020 ◽  
Vol 295 (32) ◽  
pp. 11246-11261 ◽  
Author(s):  
Duangthip Trisrivirat ◽  
Narin Lawan ◽  
Pirom Chenprakhon ◽  
Daisuke Matsui ◽  
Yasuhisa Asano ◽  
...  

l-Lysine oxidase/monooxygenase (l-LOX/MOG) from Pseudomonas sp. AIU 813 catalyzes the mixed bioconversion of l-amino acids, particularly l-lysine, yielding an amide and carbon dioxide by an oxidative decarboxylation (i.e. apparent monooxygenation), as well as oxidative deamination (hydrolysis of oxidized product), resulting in α-keto acid, hydrogen peroxide (H2O2), and ammonia. Here, using high-resolution MS and monitoring transient reaction kinetics with stopped-flow spectrophotometry, we identified the products from the reactions of l-lysine and l-ornithine, indicating that besides decarboxylating imino acids (i.e. 5-aminopentanamide from l-lysine), l-LOX/MOG also decarboxylates keto acids (5-aminopentanoic acid from l-lysine and 4-aminobutanoic acid from l-ornithine). The reaction of reduced enzyme and oxygen generated an imino acid and H2O2, with no detectable C4a-hydroperoxyflavin. Single-turnover reactions in which l-LOX/MOG was first reduced by l-lysine to form imino acid before mixing with various compounds revealed that under anaerobic conditions, only hydrolysis products are present. Similar results were obtained upon H2O2 addition after enzyme denaturation. H2O2 addition to active l-LOX/MOG resulted in formation of more 5-aminopentanoic acid, but not 5-aminopentamide, suggesting that H2O2 generated from l-LOX/MOG in situ can result in decarboxylation of the imino acid, yielding an amide product, and extra H2O2 resulted in decarboxylation only of keto acids. Molecular dynamics simulations and detection of charge transfer species suggested that interactions between the substrate and its binding site on l-LOX/MOG are important for imino acid decarboxylation. Structural analysis indicated that the flavoenzyme oxidases catalyzing decarboxylation of an imino acid all share a common plug loop configuration that may facilitate this decarboxylation.


2018 ◽  
Vol 21 (3) ◽  
pp. 513
Author(s):  
Bagus Fajar Pamungkas ◽  
Supriyadi Supriyadi ◽  
Agnes Murdiati ◽  
Retno Indrati

Characteristics of collagen are influenced by the source of raw materials and extraction methods used. The aim of this research was to characterize the acid- and pepsin-soluble collagens from the dry scales of the striped snakehead (Channa striatus). Collagen was extracted using to methods including 0.5 M acetic acid and 0.1% pepsin. The yield of acid soluble collagen (KLA-SH) and pepsin soluble collagen (KLP-SH) were 0.98% and 1.94%, respectively. KLA-SH and KLP-SH contained glycine as the major amino acid and had high imino acid group content i.e 226 and 230 residues/1.000 residues, respectively. FTIR spectra of KLA-SH and KLP-SH showed that of the structure of collagen could be maintained in the form of triple helix structure. KLA-SH and KLP-SH consisted of α1- and α2-chain, β-chain, and γ-chain and is suggested as type I collagen.


2017 ◽  
Vol 7 (6) ◽  
pp. 20160138 ◽  
Author(s):  
Jayati Banerjee ◽  
Helena S. Azevedo

Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks—variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification—that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.


2014 ◽  
Vol 54 (8) ◽  
pp. 1095
Author(s):  
Do Hun Lee ◽  
Heeok Hong ◽  
Gaurav Lodhi ◽  
Sun Hee Cheong ◽  
Pyo Jam Park ◽  
...  

Collagen was extracted from the antler velvet of elk (Cervus elaphus). Two types of collagen were prepared namely, acetic acid-soluble collagen and pepsin-soluble collagen. The electrophoretic patterns of both of the collagens showed that they were heterotrimeric, i.e. they consisted of α1α2α3. The total yield of the collagen obtained from the elk antler velvet was 12.1%. Amino acid analysis of the collagen by high-performance liquid chromatography showed that imino acid content such as that of proline and hydroxyproline was high, which might contribute to better visco-elastic properties. The peptide mapping of the collagens showed their similarity with porcine Type I collagen, thereby suggesting that the primary structure of both collagens is identical to that of porcine skin Type I collagen. The thermal denaturation temperature was 37°C, which is comparable to porcine Type I collagen and may also be as a result of high imino acid content.


2011 ◽  
Vol 85 (7) ◽  
pp. 1183-1186
Author(s):  
D. L. Kotova ◽  
E. G. Davydova ◽  
T. A. Krysanova

Sign in / Sign up

Export Citation Format

Share Document