Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media

2012 ◽  
Vol 66 (9) ◽  
Author(s):  
Veronica Gómez-Jacinto ◽  
Tamara García-Barrera ◽  
Ines Garbayo-Nores ◽  
Carlos Vilchez-Lobato ◽  
José-Luis Gómez-Ariza

AbstractThe microalga Chlorella sorokiniana has been used to accumulate selenium and iodine from culture media enriched with these elements as a first stage in the production of supplemented foods. The microalgal colony was grown in a conventional culture medium containing iodine (KI) at concentrations in the range of 150–4000 μg mL−1. Similar experiments were performed with selenium (SeO42−) at concentrations in the range of 20–500 μg mL−1. The concentration of iodine and selenium in the culture medium was analytically monitored daily and the viability of the colony was checked by biomass concentration measurement and by evaluation of the total content of chlorophyll and carotenoids. In addition, photosynthetic activity and the number of cells were also monitored. Iodine accumulation in the algal biomass increased rapidly with time and reached a steady state after 4 h of exposure. With Se exposure the colony viability decreased, although the culture grew well with concentrations of the element of 50 μg mL−1 in the culture medium; this experiment produced Se-enrichment in the alga (3 μg g−1) within 100 h. Sequential extraction of an algal pellet was performed in order to separate Se compounds according to their affinity with the following solvents: hot water to recover low molecular mass Se species, enzymatic extraction with driselase for species associated with the cell wall, sodium dodecyl sulphate (SDS) for water insoluble selenoproteins and, finally, enzymolysis with lipase and pronase that release and fragment residual selenoproteinsproducing compounds with low molecular mass. Size-exclusion chromatography (SEC) coupled with an ICP-MS detector showed the preponderance of Se-containing molecules with low molecular mass, possibly seleno-amino acids. Only a peak of low intensity located at 10 min was observed in the SDS extract that could be associated with a protein with molecular mass of 67 kDa. Finally, analysis of the aqueous extract of alga by reverse-phase chromatography with inductively-coupled plasma mass-spectrometry (RPC-ICP-MS) detection revealed the presence of selenocysteine (SeCys2), selenomethylselenocysteine (SeMetSeCys), selenomethionine (SeMet), and Se(VI), particularly the last two species.

1999 ◽  
Vol 71 (5) ◽  
pp. 899-918 ◽  
Author(s):  
J. Szpunar ◽  
R. Lobinski

Analytical chemistry of metal complexes with biomacromolecules based on the coupling of a high resolution separation technique with an element or species selective detection technique is critically discussed. The role of size-exclusion chromatography (SEC) with on-line atomic spectrometric detection is evaluated for the characterization of the metal distribution among the fractions of different molecular weight. Attention is given to the conditions for the separation of metallated biomacromolecular isoforms and sub-isoforms by anion-exchange and reversed-phase HPLC. Techniques for interfacing chromatography with atomic absorption spectrometry (AAS), inductively coupled plasma atomic emission spectrometry (ICP AES) and ICP mass spectrometry (ICP MS) are assessed. The potential of electrospray (tandem) mass spectrometry for the on-line determination of the molecular mass of the eluting protein is highlighted. Perspectives for capillary zone electrophoresis (CZE), microbore and capillary HPLC with ICP MS and electrospray MS detection for probing metalloproteins are discussed. Applications of hyphenated techniques to the analysis of real-world samples are reviewed.


Author(s):  
Ramoona Masoud ◽  
Kianoosh Khosravi-Darani ◽  
Anoosheh Sharifan ◽  
Gholam-Hasan Asadi ◽  
Habibollah Younesi

This study aimed to evaluate the capacity of Saccharomyces cerevisiae for Cadmium absorption in Milk. Nowadays one of the most serious problems is heavy metals pollution. Applying microorgaisms as a novel biotechnology is so useful especially in foodstuffs. Among the biosorbents for heavy metals’ removal, Saccharomyces cerevisiae has got an increasing attention due to its popularity in food industry. In this regard, the effects of some important factors such as the initial metal concentration, biomass concentration and contact time on the biosorption capacity of Saccharomyces cerevisiae were studied. The biosorption was analyzed by the inductively coupled plasma mass spectrometer (ICP-MS). The maximum Cd bioremoval (70%) was at 80 μg/L of this metal concentration in milk samples containing 30×108 CFU Saccharomyces cerevisiae at the end of storage time (the 4th day). There were no significant differences in sensory and physicochemical properties of milk samples during storage (p < 0.05). The isotherm studies followed by two popular models; Langmuir and Freundlich and the results showed a better fit to the Langmuir isotherm. All together, the results of this project demonstrated that the approach of using this valuable yeast, could be applied for food and drinks’ detoxification and producing healthier foods.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 440 ◽  
Author(s):  
Nikola Lepojević ◽  
Ivana Šćepan ◽  
Branislav Glišić ◽  
Monika Jenko ◽  
Matjaž Godec ◽  
...  

Nickel-titanium (NiTi) orthodontic archwires are crucial in the initial stages of orthodontic therapy when the movement of teeth and deflection of the archwire are the largest. Their great mechanical properties come with their main disadvantage—the leakage of nickel. Various in vitro studies measured nickel leakage from archwires that were only immersed in the medium with little or minimal simulation of all stress and deflection forces that affect them. This study aims to overcome that by simulating deflection forces that those archwires are exposed to inside the mouth of a patient. NiTi orthodontic archwires were immersed in CACO2-2 cell culture medium and then immediately loaded while using a simulator of multiaxial stress for 24 h. After the experiment, the surface of the NiTi orthodontic archwires were analysed while using scanning electron microscopy (SEM) and auger electron spectroscopy (AES). The observations showed significant microstructural and compositional changes within the first 51 nm thickness of the archwire surface. Furthermore, the released nickel and titanium concentrations in the CACO2-2 cell culture medium were measured while using Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). It was found out that the level of released nickel ions was 1.310 µg/L, which can be assigned as statistically significant results. These data represent the first mention of the already detectable release of Ni ions after 24 h during the simulation of mechanical loading in the CACO2-2 cell culture medium, which is important for clinical orthodontic praxis.


Metallomics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1094-1105 ◽  
Author(s):  
Trang Q. Nguyen ◽  
Joshua E. Kim ◽  
Hayley N. Brawley ◽  
Paul A. Lindahl

Labile metal pools in the cytosol of yeast, including those of iron, copper, zinc, and manganese, can be detected and characterized using size-exclusion chromatography with online ICP-MS.


Author(s):  
Marta Kisielewska ◽  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Joanna Kazimierowicz ◽  
Piera Quattrocelli ◽  
...  

AbstractThe aim of the study was to investigate the potential of microalgal cultivation on anaerobic liquid digestate as a growth medium. The two methods of liquid digestate treatment including centrifugation and distillation and the two algal strains (Chlorella vulgaris and Arthrospira platensis) were compared. Additionally, the volume of the liquid digestate used to prepare the culture medium constituted from 10 to 50% of the medium volume. The study demonstrated that the highest C. vulgaris and A. platensis biomass productions of 2490 mg TS/L and 2990 mg/L, respectively, were obtained by adding 50% of distilled digestate to a growth medium. Regarding centrifuged liquid digestate, only 10% dilution was required to obtain the maximum final biomass concentration. A. platensis removed 81.1% and 66.4% of the total nitrogen from medium prepared on distilled and centrifuged digestate, respectively, while C. vulgaris ensured 64.1% and 47.1% of removal, respectively. The phosphorus removal from both culture media was higher than 94.2% with A. platensis, while it was 70.4% from distilled and 87.4% from centrifuged media with C. vulgaris. The study confirmed a great potential of microalgal biomass production on anaerobic liquid digestate with a high treatment efficiency of digestate.


2003 ◽  
Vol 69 (8) ◽  
pp. 4628-4638 ◽  
Author(s):  
Julien Maillard ◽  
Wolfram Schumacher ◽  
Francisco Vazquez ◽  
Christophe Regeard ◽  
Wilfred R. Hagen ◽  
...  

ABSTRACT The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 ± 1 kDa, whereas the native molecular mass was 71± 8 kDa according to size exclusion chromatography in the presence of the detergent octyl-β-d-glucopyranoside. The monomeric enzyme contained (per mol of the 60-kDa subunit) 1.0± 0.1 mol of cobalamin, 0.6 ± 0.02 mol of cobalt, 7.1± 0.6 mol of iron, and 5.8 ± 0.5 mol of acid-labile sulfur. Purified PceA catalyzed the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with a specific activity of 250 ± 12 nkat/mg of protein. In addition, several chloroethanes and tetrachloromethane caused methyl viologen oxidation in the presence of PceA. The Km values for tetrachloroethene, trichloroethene, and methyl viologen were 20.4± 3.2, 23.7 ± 5.2, and 47 ± 10 μM, respectively. The PceA exhibited the highest activity at pH 8.1 and was oxygen sensitive, with a half-life of activity of 280 min upon exposure to air. Based on the almost identical N-terminal amino acid sequences of PceA of Dehalobacter restrictus, Desulfitobacterium hafniense strain TCE1 (formerly Desulfitobacterium frappieri strain TCE1), and Desulfitobacterium hafniense strain PCE-S (formerly Desulfitobacterium frappieri strain PCE-S), the pceA genes of the first two organisms were cloned and sequenced. Together with the pceA genes of Desulfitobacterium hafniense strains PCE-S and Y51, the pceA genes of Desulfitobacterium hafniense strain TCE1 and Dehalobacter restrictus form a coherent group of reductive dehalogenases with almost 100% sequence identity. Also, the pceB genes, which may code for a membrane anchor protein of PceA, and the intergenic regions of Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy.


2012 ◽  
Vol 84 (2) ◽  
pp. 269-280 ◽  
Author(s):  
Veronica Gómez-Jacinto ◽  
Tamara García-Barrera ◽  
Ines Garbayo ◽  
Carlos Vílchez ◽  
José Luis Gómez-Ariza

The optimization of culture conditions for selenium (Se) bioaccumulation in the microalgae Chlorella sorokiniana growth in a Na2SeO4-enriched medium was explored, in order to obtain a suitable approach for the biotechnological production of a Se-enriched food. Se concentration (as Na2SeO4) in the culture medium until 100 μg ml–1 allows the growth of algae colonies during long periods of time, until 300 h, but higher concentrations cause the collapse of the colony. The bioaccumulation process causes a concentration of Se in algae in the order of 3 μg g–1 in about 100 h. A metallomic analytical approach based in the coupling high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), which uses two chromatographic switched columns (C-18 and chiral columns) with ICP-MS detection, has been applied to characterize the different Se metabolites, including chiral forms, in both the algae and culture medium. The results reveal that selenate present in the culture is biotransformed in selenocystine (SeCys2), selenomethylselenocysteine (SeMeSeCys), and mainly selenomethionine (SeMet) by the algae, although appreciable concentration of Se(VI) is also present in cells. When algae are cultured under sulfur (S) deficiency conditions, the accumulation of Se in the cell is enhanced owing to the great chemical similarity between S and Se that promotes the substitution of S by Se in the cell metabolism, therefore, SeMet concentration in the algae increases from about 7 to 15 μg g–1 and Se(VI) from 15 to 25 μg g–1, after 500 h of exposure.


Sign in / Sign up

Export Citation Format

Share Document