Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures

2013 ◽  
Vol 67 (2) ◽  
Author(s):  
Miloslav Hartman ◽  
Karel Svoboda ◽  
Michael Pohořelý ◽  
Michal Šyc ◽  
Michal Jeremiáš

AbstractResults of an experimental study on the rate of attrition of lime catalyst/sorbent in a high-temperature, turbulent fluidized bed with quartz sand are presented. Batch measurements were conducted at 850°C in an electrically heated gasification reactor of the inner diameter of 5.1 cm with three samples of high-grade dolomitic lime of the particle size 450 μm, 715 μm, and 1060 μm, respectively. In addition to the influence of the particle size, the effect of operating (elapsed) time was investigated at different superficial gas velocities. Assuming that the attrition rate decreases exponentially with time, a simple mechanistic model, enabling the correlation of the measured experimental data, was developed. The course of the lime particles attrition is described as a function of the elapsed time, excess gas velocity, and particle size. The presented approach and the results might be applicable for the attrition of high-grade dolomitic lime, particularly in fluidized gasification of biomass.

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 967
Author(s):  
Sae Han Park ◽  
Chae Eun Yeo ◽  
Min Ji Lee ◽  
Sung Won Kim

There is a growing interest in a fluidized bed particle receiver that directly irradiates sunlight to particles in the fluidized bed as a solar thermal collector for heating. Thermal performance of directly-irradiated fluidized bed gas heater is strongly affected by the physical properties of the particles. The effect of SiC particle size on heat transfer characteristics in the solar fluidized bed gas heater (50 mm-ID × 100 mm high) has been determined. The outlet gas temperatures showed a maximum value with increasing gas velocity due to the particles motion by bubble behavior in the bed, and the maximum values were found at 3.6 times of Umf for fine SiC and less than 2.0 times of Umf for coarse SiC. Heat absorption from the receiver increased with increasing gas velocity, showing with maximum 18 W for the fine SiC and 23 W for the coarse SiC at 4.5 times of Umf. The thermal efficiency of the receiver increased with increasing gas velocity, but was affected by the content of finer particles. The maximum thermal efficiency of the receiver was 14% for fine SiC and 20% for coarse SiC within the experimental range, but showing higher for the fine SiC at the same gas velocity. A design consideration was proposed to improve the thermal efficiency of the system.


Author(s):  
Mohammad R. Golriz ◽  
Morgan Eriksson ◽  
Marcus O¨hman ◽  
Anders Nordin ◽  
Rainer Backman

Effects of superficial gas velocity and bed particle size on bed defluidization during biomass combustion were investigated. Sampled bed particles from four different large-scale circulating- and bubbling fluidized bed combustors, using biomass as fuel, were collected and analyzed. The bed particles from each fluidized bed unit were divided into small and large particle size fractions. The results indicate no significant difference in elemental compositions between small and large coated bed particles but the ratio of coating thickness to the mean particle diameter was higher for the small particles compared to the large ones. Controlled fluidized bed agglomeration tests revealed strong influence from fluidization velocity on initial defluidization temperatures at lower velocities, but little effect at higher velocities. Influence of bed particle size on initial defluidization temperature varied depending on operating conditions. Finally, a model based on viscous flow sintering is proposed for the relation between agglomeration temperature and superficial gas velocity. The model predictions are in good agreement with experimental data.


2007 ◽  
Vol 129 (4) ◽  
pp. 1072-1078 ◽  
Author(s):  
Sung-Sub Kee ◽  
Ali Mohammadi ◽  
Takuji Ishiyama ◽  
Takaaki Kakuta

A fluidized bed-type diesel particulate filter (DPF) was applied to filter particulate matter (PM) in diesel engine exhaust gas. The effects of the fluidized bed design parameters, such as gas velocity, bed particle size, and height, on PM and smoke filtration efficiencies, and pressure drop were experimentally investigated using a single-cylinder direct injection (DI) diesel engine. High PM filtration efficiency and low pressure drop were achieved with the DPF, especially at a lower gas velocity. The PM filtration efficiency was higher with a smaller bed particle size at the lower gas velocity; however, it drastically decreased with an increase in gas velocity due to excessive fluidization of the bed particles. Increase in bed height led to higher PM filtration efficiency while causing an increase in pressure drop. The theoretical work was also conducted for further investigation of the effects of the above-mentioned parameters on PM filtration. These results indicated that diffusion filtration was the dominant mechanism for PM filtration under the conditions of this study and that the decrease in PM filtration efficiency at high gas velocity was caused by a deterioration in the diffusion filtration. The bed particle diameter and the bed height should be optimized in order to obtain a high filtration efficiency without increasing the DPF size.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 121 ◽  
Author(s):  
Sung Kim

Fluidized bed reactors have been increasingly applied for mass production of Carbon Nanotube (CNT) using catalytic chemical vapor deposition technology. Effect of particle size (dp = 131 μm and 220 μm) on fluidization characteristics and aggregation behavior of the CNT particles have been determined in a fluidized bed for its design and scale-up. The CNT aggregation properties such as size and shape were measured in the dilute phase of a fluidized bed (0.15 m-ID × 2.6 m high) by the laser sheet technique for the visualization. Two CNT particle beds showed different tendency in variations of the aggregates factors with gas velocity due to differences in factors contributing to the aggregate formation. The CNT particles with a larger mean size presented as relatively larger in the aggregate size than the smaller CNT particles at given gas velocities. The aggregates from the large CNT particles showed a sharp increase in the aspect ratio and rapid decrease in the roundness and the solidity with gas velocity. A possible mechanism of aggregates formation was proposed based on the variations of aggregates properties with gas velocity. The obtained Heywood diameters of aggregates have been firstly correlated with the experimental parameter.


2011 ◽  
Vol 396-398 ◽  
pp. 322-325 ◽  
Author(s):  
Heng Zhi Chen ◽  
Zheng Kui Guo

Fluidization behavior of binary mixtures with titanic slag particles and carbon particles had been investigated. Three solids states in the bed: fixed bed, transient fluidization and steady fluidization, emerges as increasing gas velocity. The extent of segregation of solids mixture in transient fluidization regime depended on the size difference between jetsam particles and flotsam particles. The effects of flotsam particle size, initial jetsam concentration and the superficial gas velocity on the segregation of binary solids had been measured.


Author(s):  
Cornelis Klett ◽  
Ernst-Ulrich Hartge ◽  
Joachim Werther

In the present work a particle population balance model for a circulating fluidized bed combustor (CFBC) is developed that allows a description of the fate of individual particles in terms of attrition and transport effects. Besides the operating conditions and the particle size distribution the residence time of particles in the system is considered in the modeling of abrasion and shrinking of particles. The model takes account of the fact that fresh particles have a higher attrition rate than particles which have stayed for some time already in the system. The model aims at the description of the dynamic adjustment of the particle size distributions in a given system. The model has been validated with experimental data from a pilot-plant combustor, i.e. a CFBC with an inner diameter of 0.1 m and a height of 15 m. A comparison between experimental and calculated data shows the applicability of the model.


Author(s):  
Saad A. El-Sayed ◽  
Amro A. El-baz ◽  
Emad H. Noseir

Abstract Mixing and segregation characteristics of biomass particles are of practical importance because the in-bed combustion efficiency of volatile matter affects the vertical location of biomass in bubbling fluidized bed combustor. Sesame and broad bean stalk biomass materials mixed with sand used in this study. The superficial gas velocity, biomass chip length, sand particle size and mass fraction of biomass varied as experimental variables. The mixing and segregation behavior of mixtures were analyzed in terms of mixing index. It was found that the variability in the chip-shape made the sesame chips is quantitatively and qualitatively higher homogeneity and mixedness than the broad bean chips. The optimum overall mixing index for the sesame and the broad bean is around 0.96 and 0.84 at dimensionless superficial gas velocity (U/Umf) of 2.0 (1.40 m/sec) and 2.1 (1.25 m/sec), respectively. It was found that as the mean diameter increased and the sphericity decreased, the mixing quality decreased. The average sand particle size of 371 µm can keep good mixing with biomass chips of both materials, compared with average particle sizes of sand 550 and 700 µm. Increasing the initial biomass mass fraction yields a poor mixing of the investigated biomass stalks.


Author(s):  
Qicheng Wang ◽  
Kai Zhang ◽  
Kuanli Yang ◽  
Jianchun Jiang

The upflowing and downflowing particle velocities are investigated by using a two-optical fiber probe system in the dense gas-solid fluidized bed with an inner diameter of 0.185 m and a height of 3.000 m. Two kinds of glass ballotinis, belonging to Geldart type B classification, are selected as solid material. Experiments are conducted under different operating gas velocities, static bed heights, and particle diameters. The results indicate that the upflowing particle velocity is a strong function of operating gas velocity and particle diameter, while the downflowing particle velocity depends mainly on the operating gas velocity. When the ratio of the operating gas velocity to the minimum fluidization velocity of the particles keeps the same constant, the effect of the particle diameter on the upflowing and downflowing particle velocities can be ignored. Both direction and size of the solid particle velocity are related to the bubble behaviors in the fluidized bed, and the upflowing particle velocity is lower than the bubble rise velocity. Furthermore, the across-sectional, non-uniform flow structure in the bed increases slightly with increasing static bed height at the high operating gas velocity.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


Sign in / Sign up

Export Citation Format

Share Document