scholarly journals The analysis of some physical properties of drained peat-moorsh soil layers

Author(s):  
Ryszard Oleszczuk ◽  
Milena Truba

Abstract The analysis of some physical properties of drained peat-moorsh soil layers. The paper presents the results of measurements of some physical properties for 14 drained fen peat-moorsh layers (degree of decomposition, bulk density, particle density, porosity and saturated moisture content). The soil samples were taken from north- -east, central and east part of Poland. These areas were drained in order to use as a grassland and meadows. The article presents obtained data of selected physical properties from several drained peatlands in Poland and shows the comparison of established results with relevant data published in literature.

Author(s):  
Milena Truba ◽  
Ryszard Oleszczuk

Abstract The analysis of some basic chemical and physical properties of drained fen peat and moorsh soil layers. The paper presents the results of measurements of some chemical properties for 14 drained fen peat-moorsh layers taken from north-east, central and east part of Poland. These areas were drained in order to use as a grassland and most of them in former time were under sub- -irrigation systems. The following basic chemical properties were analysed: organic C, total N, C:N ratio, pH and ash content. In the paper also the relationships between some basic chemical and physical properties were analysed (ash content with bulk density, particle density and porosity). Increasing of ash content caused the decreasing of some chemical properties (organic carbon and total nitrogen content) and increasing some physical properties (bulk density and particle density).


2016 ◽  
Vol 824 ◽  
pp. 100-107 ◽  
Author(s):  
Alena Struhárová

Bulk density and moisture content are factors that significantly affect the physical properties of autoclaved aerated concrete (AAC) including thermal conductivity and other thermo-technical characteristics. This article shows the results of measurements of compressive strength, capillary absorption, water absorption and porosity of AAC (ash on fluidized fly ash) at different bulk density and also the results of thermal conductivity of AAC at different bulk density and variable moisture content of the material. The thermo-technical properties were measured using the Isomet 2104, a portable measuring device. Acquired results demonstrate dependence of physical properties including thermal conductivity of AAC on bulk density and moisture content. The reliability and accuracy of the method of measuring was also shown.


Author(s):  
Y. A. Unguwanrimi ◽  
A. M. Sada ◽  
G. N. Ugama ◽  
H. S. Garuba ◽  
A. Ugoani

Draft requirements of two animal – drawn (IAR) weeders operating on loam soil were determined in the study. The implements include a straddle row weeder and an emcot attached rotary weeder evaluated under the same soil conditions, using a pair of white Fulani breed of oxen. The animal draft requirement was first estimated from the animal ergonomics measurements. Using area of 0.054 hectare as experimental plot for each implement the draft requirement of each implement was investigated after taking soil samples for soil moisture content and bulk density determinations. The implements tested showed variation in their average draft requirement. The straddle row weeder had the highest value of 338.15 N respectively while the emcot attached rotary weeder had the lowest value of 188.12 N with 47.03%, respectively. The average soil moisture contents and bulk density were 13.0% and 1.46%/cm3, respectively.


2021 ◽  
Author(s):  
Martin Zanutel ◽  
Sarah Garré ◽  
Charles Bielders

<p>In the context of global soil degradation, biochar is being promoted as a potential solution to improve soil quality, besides its carbon sequestration potential. Burying biochar in soils is known to effect soil physical quality in the short-term (<5 years), and the intensity of these effects depends on soil texture. However, the long-term effects of biochar remain largely unknown yet and are important to quantify given biochar’s persistency in soils. The objective of this study was therefore to assess the long-term effect of biochar on soil physical properties as a function of soil texture and biochar concentration.  For this purpose, soil physical properties (particle density, bulk density, porosity, water retention and hydraulic conductivity curves) were measured in the topsoil of three fields with former kiln sites containing charcoal more than 150 years old in Wallonia (southern Belgium).  The fields had a silt loam, loam and sandy loam texture.  Samples were collected along 3 transects in each field, from the center of the kiln sites outwards. </p><p>Particle density and bulk density slightly decreased as a function of charcoal content. Because particle density and bulk density were affected to a similar extent by charcoal content, total porosity was not affected by the presence of century-old charcoal. Regarding the soil water retention curve, charcoal affected mostly water content in the mesopore range. This effect was strongest for the sandy loam. On the other hand, the presence of century-old charcoal increased significantly the hydraulic conductivity at pF between 1.5 and 2 for the silt loam, while no effect of charcoal was observed for the loamy soil.  The study highlights a limited effect of century-old charcoal on the pore size distribution (at constant porosity) and on the resulting soil physical properties for the range of soils and charcoal concentrations investigated here.  Further research may be needed to confirm the observed trends over a wider range of soil types. </p>


2011 ◽  
Vol 6 (No. 2) ◽  
pp. 73-82 ◽  
Author(s):  
S.E. Obalum ◽  
J.C. Nwite ◽  
J. Oppong ◽  
C.A. Igwe ◽  
T. Wakatsuki

One peculiar feature of the inland valleys abundant in West Africa is their site-specific hydrology, underlain mainly by the prevailing landforms and topography. Development and management of these land resources under the increasingly popular sawah (a system of bunded, puddled and levelled rice field with facilities for irrigation and drainage) technology is a promising opportunity for enhancing rice (Oryza sativa L.) production in the region. Information on the variations in selected soil physical properties as influenced by the prevailing landforms may serve as a useful guide in site selection. This is of practical importance since majority of the inland valleys are potentially unsuitable for sawah development and most farmers in the region are of low technical level. Three landforms (river levee, elevated area and depressed area) were identified within a sawah field located in an inland valley at Ahafo Ano South District of Ghana. Each of these landforms was topsoil-sampled along on identified gradient (top, mid and bottom slope positions). Parameters determined included particle size distribution, bulk density, total porosity and field moisture content. The soil is predominantly clayey. There were no variations in the particle size distribution among the slope positions in the river levee. Overall, the river levee had lower silt content than the elevated and the depressed landforms. The bulk density, total porosity, and gravimetric moisture content indicated relative improvements only in the depressed area in the order, bottom &gt; mid &gt; top slope. Irrespective of slope position, the three landforms differed in these parameters in the order, depressed &gt; river levee &gt; elevated. The sand fraction impacted negatively on the silt fraction and bulk density of the soil, both of which controlled the soil moisture status. Despite the fairly low silt content of the soil, the silt fraction strongly influenced the gravimetric moisture content (R<sup>2</sup> = 0.80). So too did the soil bulk density on the gravimetric moisture content (R<sup>2</sup> = 0.90). It is concluded that: (1) since the landforms more prominently influenced the measured parameters than the slope positions, the former should take pre-eminence over the latter in soil suitability judgment; (2) with respect to moisture retention, variations in silt fraction and bulk density of this and other clayey inland-valley soils should be used as guide in site selection for sawah development.


Author(s):  
Mircea OROIAN ◽  
Sorina ROPCIUC ◽  
Amalia BUCULEI ◽  
Sergiu PADURET ◽  
Elena TODOSI

The aim of this study is to determine the physicochemical (moisture content, pH, free acidity, electrical conductivity, colour (L*, a*, b*, chroma, hue angle), ash content, fructose and glucose content) and to determine the phenolic profile (quercetin, apigenin, myricetin, isorhamnetin, kaempherol, caffeic acid, chrysin, galangin, luteolin, p-coumaric acid, gallic acid and pinocembrin) of five samples of honeydew honeys from the North East part of Romania. The honey samples analysed respected the maximum allowable level of the moisture content, which is established by the European Union at 20%. The acidic nature of the honeydew is confirmed by the level of the pH and free acidity of the samples, and is influenced in principal by the organic acids; all the samples had a free acidity lower than 50 meq acid/kg. The honey colour is dark which is confirmed by the level of the CIE L*a*b* parameters (lower values of L*, a* and b*). The inverted sugar level (fructose and glucose content) is higher than 60 g/ 100g, respecting the European Union directive. The phenolic profile of the honeydew samples do not presented one compound that can be considered a chemical marker, the major polyphenols presented into the honeydew honeys are quercetin and pinocembrin.


Author(s):  
Nuhad S. S. AL- Wali ◽  
Kawthar A. AL- Mosawi

This research has been conducted to study the effect of Conocarpus trees and their roots on some of soilphysical properties. The soil physical properties are moisture content , bulk density , total porosity , mean weight diameter (dry sieveing) and soil penetration resistance . Some soil samples are collected from two locations :the first location is Agric. College research, Garmat Ali, stations , Basra university , and the second location isZuwber province farm . The soil texture of the first location is silty clay which is classified as fine clay mixed Calcarioushy perthermictypictorrifluvent, while the soil texture of  the second location is sandy loam. This soil is classified with in species Entisol and under species psamments and high group , underhigh group and family (Typictorripsamments, Calcarious Mixed Hyperthermic).  The soil samples are collected from two soil depths( 0 – 30 and 30 – 60) from both locations are planted with Conocarpus trees, their ages ranged between 4 to 5 years . The trees height is 2.5 – 3.0 m . Another soil samples are also collected from unplanted soil  with Conocarpus trees. The results reveated that the silty clay soil is significantly surpassed the sandy loam soil in moisture content and mean weight diameter by a percentage of 68.76% and 32.91% respectively . Whereas, the bulk density and soil penetration resistance decreased , while the total porosity of the silty clay soil as compared with sandy loam soil .For unplanted soil, moisture content, the bulk density and the soil penetration resistance are increased as compared with planted soil . The soil depth (30 – 60)cm is surpassed soil depth of ( 0- 30)cm in giving higher values of moisture content andbulk density whereas it does not significantly affect the mean weight diameter and  soil penetration resistance .


Author(s):  
P. C. Vengaiah ◽  
S. Kaleemullah ◽  
M. Madhava ◽  
A. Mani ◽  
B. Sreekanth

Some physical properties of palmyrah fruit were investigated in this study. The average values of major, medium, minor and geometric mean diameters of fresh whole palmyrah fruit were 11.54,10.45, 9.85 and 10.64 cm respectively at 47.34 % (w.b) moisture content whereas that of palmyrah nut were 8.59, 7.35, 4.99 and 6.79 cm respectively at 8% (w.b) moisture content. Sphericity, surface area and aspect ratio were found to be 91.94%, 359.17 cm2 and 0.90 for fruit and whereas that of nut were 79.19%, 145.16 cm2 and 0.86 respectively. The average mass of the individual palmyrah fruit and nut was 927.78 and 248.10 g whereas bulk density was 525.92 and 693.0 kg/m3 respectively. The coefficient of static friction on mild steel, glass and plywood surfaces were 0.27, 0.21 and 0.25 for palmyrah fruit and 0.36, 0.28 and 0.27 for nut respectively. The angle of repose of palmyrah fruit and nut were 30.77 and 44.03 respectively.


2021 ◽  
Vol 15 (2) ◽  
pp. 216
Author(s):  
Yonodius Paskalis Bay ◽  
Nina Yulianti ◽  
Suparno Suparno ◽  
Fengky Florante Adji ◽  
Zafrullah Damanik ◽  
...  

Indonesia has the largest peat area in the tropical zone, which estimated about 21 million ha, with a percentage of 70% of the peat area in Southeast Asia and 50% of the world's tropical peatlands. This study aims to evaluate the physical properties of soil in each layer of soil and land cover in inland peat swamp forests in LAHG in Central Kalimantan. The research used the profile method (minipit) measuring 120 cm x 120 cm. Each location is given 3 plots on 2 (two) land cover  namely forest and burnt area. The research location is in LAHG. This research was conducted in July-December 2020. Samples were analyzed at the Banjarbaru Research and Development Laboratory. The parameters observed were bulk density, moisture content, fiber content, soil color, infiltration, and hydraulic conductivity. The research data were analyzed statistically by means of regression and correlation analysis. The results showed that the study of the physical properties of inland peat soil in the forest had bulk density ranging from 0.10 to 0.15 g / cm-3, moisture content 541.18-910.00%, fiber content 8-40%, infiltration -0 , 58-29.27 ml / hour, hydraulic conductivity 2.4-66.6 cm / hour with reddish black soil color. Whereas on burnt land, bulk density ranged from 0.10 to 0.15 g / cm-3, moisture content was 500.00-916.67%, fiber content was 12-52%, infiltration was -3.19-60.99 ml. / hr, hydraulic conductivity 2.4-30.6 cm / hr with dark black soil color. The study relationship pattern shows positive and negative.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 48
Author(s):  
Dorota Dukarska ◽  
Tomasz Rogoziński ◽  
Petar Antov ◽  
Lubos Kristak ◽  
Jakub Kmieciak

The properties of particleboards and the course of their manufacturing process depend on the characteristics of wood particles, their degree of fineness, geometry, and moisture content. This research work aims to investigate the physical properties of wood particles used in the particleboard production in dependence on their moisture content. Two types of particles currently used in the production of three-layer particleboards, i.e., microparticles (MP) for the outer layers of particleboards and particles for the core layers (PCL), were used in the study. The particles with a moisture content of 0.55%, 3.5%, 7%, 10%, 15%, and 20% were tested for their poured bulk density (ρp), tapped bulk density (ρt), compression ratio (k), angle of repose (αR), and slippery angle of repose (αs). It was found that irrespective of the fineness of the particles, an increase in their moisture content caused an increase in the angle of repose and slippery angle of repose and an increase in poured and tapped bulk density, while for PCL, the biggest changes in bulk density occurred in the range up to 15% of moisture content, and for MP in the range above 7% of moisture content, respectively. An increase in the moisture content of PCL in the range studied results in a significant increase in the compression ratio from 47.1% to 66.7%. The compression ratio of MP increases only up to 15% of their moisture content—a change of value from 47.1% to 58.7%.


Sign in / Sign up

Export Citation Format

Share Document