scholarly journals A sensitive spectrophotometric method for the determination of H2-receptor antagonists by means of N-bromosuccinimide and p-aminophenol

2008 ◽  
Vol 58 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Ibrahim Darwish ◽  
Samiha Hussein ◽  
Ashraf Mahmoud ◽  
Ahmed Hassan

A sensitive spectrophotometric method for the determination of H2-receptor antagonists by means ofN-bromosuccinimide andp-aminophenolA simple, accurate and sensitive spectrophotometric method for determination of H2-receptor antagonists: cimetidine (CIM), famotidine (FAM), nizatidine (NIZ), and ranitidine hydrochloride (RAN) has been fully developed and validated. The method was based on the reaction of these drugs with NBS and subsequent measurement of the excessN-bromosuccinimide by its reaction withp-aminophenol to give a violet colored product (λmaxat 552 nm). Decrease in the absorption intensity (ΔA) of the colored product, due to the presence of the drug, was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under optimal conditions, linear relationships with good correlation coefficients (0.9988--0.9998) were found between ΔAvalues and the corresponding concentrations of the drugs in a concentration range of 8--30, 6--22, 6--25, and 4--20 μg mL-1for CIM, FAM, NIZ, and RAN, respectively. Limits of detection were 1.22, 1.01, 1.08, and 0.74 μg mL-1for CIM, FAM, NIZ, and RAN, respectively. The method was validated in terms of accuracy, precision, ruggedness, and robustness; the results were satisfactory. The proposed method was successfully applied to the analysis of the above mentioned drugs in bulk substance and in pharmaceutical dosage forms; percent recoveries ranged from 98.5 ± 0.9 to 102.4 ± 0.8% without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods.

INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (09) ◽  
pp. 31-35
Author(s):  
R Rambabu ◽  
◽  
S Vidyadhara ◽  
J Subbarao

A simple and sensitive spectrophotometric method for the determination of ramipril and telmisartan in pharmaceutical dosage forms has been developed. The absorption maxima were found at 220nm for ramipril and 297nm for telmisartan using 0.1N NaOH as solvent. Beer’s law was obeyed for both the drugs in the concentration range of 2-10μg/ml with correlation coefficients 0.999 for both ramipril and telmisartan. The limits of detection for ramipril and telmisartan were found to be 0.142 and 0.405μg/mL respectively and the limits of quantitation were 0.43 and 1.22μg/mL. Accuracy of the method was verified by performing recovery studies using simultaneous equation method and found to be 98.33 to 99.54%w/w for ramipril and 99.36 to 99.82 %w/w for telmisartan. %RSD of repeatability and intermediate precision studies were found to be <2 for both the drugs. Ruggedness of the method was checked by changing analyst worked and instrument used. In both the cases, the %RSD was found to be less than 2.


2010 ◽  
Vol 60 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Padmarajaiah Nagaraja ◽  
Ashwinee Shrestha ◽  
Anantharaman Shivakumar ◽  
Avinash Gowda

Use ofN, N-diethyl-p-phenylenediamine sulphate for the spectrophotometric determination of some phenolic and amine drugsSpectrophotometric methods are proposed for the determination of drugs containing a phenol group [salbutamol sulphate (SLB), ritodrine hydrochloride (RTD), isoxsuprine hydrochloride (IXP)] and drugs containing an aromatic amine group [dapsone hydrochloride (DAP), sulfamethoxazole (SFM), and sulfadiazine (SFD)] in pharmaceutical dosage forms. The methods are based on coupling ofN, N-diethyl-p-phenylenediamine sulphate with the drugs in the presence of KIO4to give a green colored product (λmaxat 670 nm) and a red colored product (λmaxat 550 nm), respectively. Linear relationships with good correlation coefficients (0.9986-0.9996) were found between absorbance and the corresponding concentration of drugs in the range 1-7, 2-22, 1-17, 1.5-12, 2-25, and 2-21 μg mL-1for SLB, RTD, IXP, DAP, SFM and SFD, respectively. Variable parameters such as temperature, reaction time and concentration of the reactants have been analyzed and optimized. The RSD of intra-day and inter-day studies was in the range of 0.2-1.0 and 0.4-1.0%, respectively. No interference was observed from common pharmaceutical adjuvants. The reliability and performance of the proposed methods was validated statistically; the percentage recovery ranged from 99.5 ± 0.1 to 99.9 ± 0.3%. Limits of detection were 0.14, 0.21, 0.51, 0.44, 0.33 and 0.37 μg mL-1for SLB, RTD, IXP, DAP, SFM, and SFD, respectively.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-64
Author(s):  
Ahmed I. Hassan

Abstract An environmentally safe, simple and robust spectrophotometric method has been developed for determination of H2-receptor antagonists namely: cimetidine (CIM), famotidine (FAM), nizatidine (NIZ), and ranitidine hydrochloride (RAN). The method was depend on the reaction of the studied drugs with N-bromosuccinimide (NBS), environmentally friendly reagent, and the excess NBS was measured by its reaction with phloroglucinol to give a yellow chromogenic product (λmax at 435 nm). The absorption intensity decrease (ΔA) was correlated with drug concentrations in the sample solutions. By using of the optimum conditions, linear calibration curves with good correlation coefficients (0.9958–0.9998) were found between the measured ΔA values and the corresponding drugs concentrations in the range of 12-80 μg mL−1. Limits of detection were in the range 1.31-2.21 μg mL−1. The proposed method was validated and successfully applied for the analysis of the above mentioned drugs in their bulk and pharmaceutical dosage forms with good recoveries (98.5 ± 0.98 to 102.5 ± 0.79%). No interferences were obtained from the common excipients. The proposed method was successfully applied for the analysis of H2RAs in their dosage forms and the results were comparable with that obtained by the official methods.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ashraf M. Mahmoud ◽  
Nasr Y. Khalil ◽  
Ibrahim A. Darwish ◽  
Tarek Aboul-Fadl

New selective and sensitive spectrophotometric and spectrofluorometric methods have been developed and validated for the determination of amantadine hydrochloride (AMD) in capsules and plasma. The methods were based on the condensation of AMD with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product. The spectrophotometric method involved the measurement of the colored product at 460  nm. The spectrofluorometric method involved the reduction of the product with potassium borohydride, and the subsequent measurement of the formed fluorescent reduced AMD-NQS product at 382  nm after excitation at 293  nm. The variables that affected the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9972–0.9974) and low LOD (1.39 and 0.013 g ) were obtained in the ranges of 5–80 and 0.05–10  g  for the spectrophotometric and spectrofluorometric methods, respectively. The precisions of the methods were satisfactory; RSD . Both methods were successfully applied to the determination of AMD in capsules. As its higher sensitivity, the spectrofluorometric method was applied to the determination of AMD in plasma; the recovery was 96.3––4.2%. The results obtained by the proposed methods were comparable with those obtained by the official method


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim A. Darwish ◽  
Heba H. Abdine ◽  
Sawsan M. Amer ◽  
Lama I. Al-Rayes

Simple and rapid spectrophotometric method has been developed and validated for the determination of paroxetine (PRX) in tablets. The proposed method was based on nucleophilic substitution reaction of PRX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product of maximum absorption peak () at 488 nm. The stoichiometry and kinetics of the reaction were studied, and the reaction mechanism was postulated. Under the optimized reaction conditions, Beer's law correlating the absorbance (A) with PRX concentration (C) was obeyed in the range of 1–8 g . The regression equation for the calibration data was: A = 0.0031 + 0.1609 C, with good correlation coefficients (0.9992). The molar absorptivity () was L  1 . The limits of detection and quantitation were 0.3 and 0.8 g , respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of PRX in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was %. The results obtained by the proposed method were comparable with those obtained by the official method.


2013 ◽  
Vol 10 (3) ◽  
pp. 965-970
Author(s):  
Baghdad Science Journal

A simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.


2008 ◽  
Vol 33 (3) ◽  
pp. 7-12 ◽  
Author(s):  
M. A. Gotardo ◽  
L. S. Lima ◽  
R. Sequinel ◽  
J. L. Rufino ◽  
L. Pezza ◽  
...  

A simple, rapid and sensitive spectrophotometric method has been developed for the determination of methyldopa in pharmaceutical formulations. The method is based on the reaction between tetrachloro-p-benzoquinone (p-chloranil) and methyldopa, accelerated by hydrogen peroxide (H2O2), producing a violet-red compound (λmax = 535 nm) at ambient temperature (25.0 ± 0.2 ºC). Experimental design methodologies were used to optimize the measurement conditions. Beer's law is obeyed in a concentration range from 2.10 x 10-4 to 2.48 x 10-3 mol L-1 (r = 0.9997). The limit of detection was 7.55 x 10-6 mol L-1 and the limit of quantification was 2.52 x 10-5 mol L-1. The intraday precision and interday precision were studied for 10 replicate analyses of 1.59 x 10-3 mol L-1 methyldopa solution and the respective coefficients of variation were 0.7 and 1.1 %. The proposed method was successfully applied to the determination of methyldopa in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95 % confidence level.


2005 ◽  
Vol 88 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Ibrahim A Darwish

Abstract Three simple and sensitive spectrophotometric methods were developed and validated for determination of the hydrochloride salts of fluoxetine, sertraline, and paroxetine in their pharmaceutical dosage forms. These methods were based on the reaction of the N-alkylvinylamine formed from the interaction of the free secondary amino group in the investigated drugs and acetaldehyde with each of 3 haloquinones, i.e., chloranil, bromanil, and 2,3-dichloronaphthoquinone, to give colored vinylamino-substituted quinones. The colored products obtained with chloranil, bromanil, and 2,3-dichloronaphthoquinone exhibit absorption maxima at 665, 655, and 580 nm, respectively. The factors affecting the reactions were studied and optimized. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9986–0.9999) were found between the absorbances and the concentrations of the investigated drugs in the range of 4–120 μg/mL. The limits of detection for the assays ranged from 1.19 to 2.98 μg/mL. The precision values of the methods were satisfactory; the relative standard deviations were 0.56–1.24%. The proposed methods were successfully applied to the determination of the 3 drugs in pure and pharmaceutical dosage forms with good accuracy; the recoveries ranged from 99.1 to 101.3% with standard deviations of 1.15–1.92%. The results compared favorably with those of reported methods.


2018 ◽  
Vol 3 (2) ◽  
pp. 1
Author(s):  
Mohauman Mohammad Majeed Al-Rufaie ◽  
Zahraa Yosif Motaweq

<em>A new simple, accurate and low cost-effective UV-VIS spectrophotometric methods has been developed for the analysis of chosen cephalosporins (ceftriaxone, ceftazidime) in bulk samples and pharmaceutical dosage forms<strong> </strong>by using a specific  color-generated reaction. This method involves the Schiff 's base formation reaction between selected cephalosporins with alcoholic 5-sulfo salicylaldehyde reagent 5SSA with heating to establish a yellow colored product displaying λmax at 426 nm as well as 412 nm sequentially. These methods applied to the Beer’s law through the range of concentration was  (4 - 60 µg.ml<sup>-1</sup>), (5 -50µg ml<sup>-1</sup>) respectively for two drugs. The analysis results for these studies  have been tested statistically by the studies of recovery. These methods were successfully applied to the determination of the cephalosporins in bulk form and in Pharmaceuticals additionally it was shown that these methods have equivalent accuracy with the common method(BP)estimation procedures for the studied  drugs. The interferences from frequently taken excipients were  no influence on the estimation process .The study could discover a good  as an employment cost-influence and speed method which that possibility used for making quality control for  these cephalosporin antibiotics.</em>


2015 ◽  
Vol 18 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Sujan Banik ◽  
Palash Karmakar ◽  
Md Anowar Hossain Miah

The present study was undertaken to develop a spectrophotometric method for determination of vildagliptin and Linagliptin in pharmaceutical dosage forms. This paper describes a simple, rapid, accurate and precise UVspectrophotometric method for the assay of vildagliptin and linagliptin in bulk and marketed tablet dosage forms. The validation of the developed method was carried out according to ICH guidelines with respect to linearity, precision, accuracy, specificity, limit of detection and limit of quantification. Calibration curves were obtained in the concentration range of 8-32 ?g/ml for vildagliptin and 5-25 ?g/ml for linagliptin with good correlation coefficients (r=0.999). The precisions of the new method for both drugs were less than the maximum allowable limit (%RSD < 2.0) specified by the USP, ICH and FDA. Therefore, the method was found to be an accurate, reproducible and sensitive for analysis of vildagliptin and linagliptin in pharmaceutical dosage forms.Bangladesh Pharmaceutical Journal 18(2): 163-168, 2015


Sign in / Sign up

Export Citation Format

Share Document