scholarly journals The effect of bottom sediment on biomass production by Italian ryegrass and maize

2007 ◽  
Vol 9 (4) ◽  
pp. 48-51 ◽  
Author(s):  
Barbara Wiśniowska-Kielian

The effect of bottom sediment on biomass production by Italian ryegrass and maize A two-year pot experiment (2005 and 2006) was conducted to estimate an effect of dredged bottom sediment from Rożnów Reservoir addition to the light, very acid soil on the plant biomass production. The sediment was applied in the amount from 1 to 20% of the substratum mass. Italian ryegrass (Lolium multiflorum L.) and maize (Zea mays L.) were cultivated as the successive test plants. The lowest amount of plant biomass was obtained on the soil (control) and each sediment addition to the substratum caused an increase of the biomass production, both tops as well as the roots of the plant. Larger sediment additions (7% and more) caused a significant increase of the yield, of both the individual plant species and the total biomass during the two years of the experiment. The bottom sediment added to the light, very acid soil distinctly improved the plant yielding and the way of biomass utilisation should be assessed on the basis of its chemical composition analysis.

1970 ◽  
Vol 8 (2) ◽  
pp. 108-116
Author(s):  
Shahrina Akhtar ◽  
Jalal Uddin Ahmed ◽  
Abdul Hamid ◽  
Md Rafiqul Islam

A study was conducted to evaluate 100 chickpea genotypes to explore their genetic diversity in respect of emergence and growth attributes. A high genotypic variation was observed in the characters studied. The highest positive correlation corresponded to the root mass and total plant biomass of the seedlings. Seedling biomass production was highly subjective to seedling vigor. Using discriminant function analysis, the first two functions contributed 46.2 and 39.0%, and altogether 85.2% of the variability among the genotypes. Function 1 was positively related to dry weight of root and total plants. The character with the greatest weight on function 2 was seedling emergence rate. The total dry weight of seedlings played the most dominant role in explaining the maximum variance in the genotypes. The genotypes were grouped into six clusters. Each cluster had specific seedling characteristics and the clusters 5 and 6 were closely related and clearly separated from clusters 1 and 4 for their higher amount of root and total biomass production, and vigorous seedlings, where as, the genotypes in cluster 2 and 3 were intermediate. The genotypes in cluster 5 followed by cluster 6 appeared to be important resources for selecting and developing chickpea variety. Keywords: Chickpea; genotypes; seedling; quality DOI: 10.3329/agric.v8i2.7584 The Agriculturists 8(2): 108-116 (2010)


2000 ◽  
Vol 80 (3) ◽  
pp. 395-400 ◽  
Author(s):  
W. A. Rice ◽  
G. W. Clayton ◽  
P. E. Olsen ◽  
N. Z. Lupwayi

Crop production systems that include field pea (Pisum sativum L.) in rotation are important for sustainable agriculture on acid soils in northwestern Canada. Greenhouse experiments were conducted to compare the ability of liquid inoculant applied to the seed, powdered peat inoculant applied to the seed, and granular inoculant applied in a band with the seed to establish effective nodulation on field pea grown at soil pH(H2O) 4.4, 5.4 and 6.6. Plants were grown to the flat pod stage, and then total plant biomass dry weight, dry weight of nodules, number of nodules, plant nitrogen content, and proportion of plant nitrogen derived from the atmosphere (%Ndfa) were measured. Granular and powdered peat inoculants produced greater nodule numbers and weight, plant nitrogen content, %Ndfa and total biomass than liquid inoculant in at least two of the three experiments. Only granular inoculant was effective in establishing nodules at soil pH 4.4, but granular and powdered peat inoculants were effective at pH 5.4, and all three formulations were effective at pH 6.6. The results showed that granular inoculant has potential for effective nodulation of field pea grown on acid soil. Key words: Rhizobium, inoculant formulations, field pea, nodulation, acid soil


Author(s):  
Michaela Hillermannová ◽  
Radovan Kopp ◽  
Ivo Sukop ◽  
Tomáš Vítek

The aim of the performed research was to obtain knowledge on the ability of aquatic plants naturally growing at a site to absorb trace metals contained in bottom sediments and surface water. Furthermore, we compared differences in the accumulation of trace metals by the individual groups of aquatic plants (submerged and emergent) and assessed a possible use of the individual plant species in phytoremediation techniques. Representative samples of water, sediments and aquatic macrophytes were taken from three anthropogenically loaded streams in six monitoring cycles in several collection profiles differing in the distance from a source of contamination. The samples were analysed for the total content of selected trace metals (As, Cd, Pb, Al, Hg, Zn, Fe, Mn, Cr, Ni and Cu). For comparison, one profile at an unloaded site was sampled as well. The obtained results were subjected to multivariate statistical analysis of data. Increased contents of Fe, Al, Mn, Cr and Zn were detected in sediments and plant biomass at loaded sites, namely 2–3× higher than at the comparing site. The contents of metals in surface water samples were altogether below the detection limit of the analytical method. When evaluating the individual plant species, we can state that the lowest contents of metals were detected in shore species (reed canary grass Phalaroides arundinacea, wood club-rush Scirpus silvaticus and red dock Rumex aquaticus); plant species growing in the very water current (water star-wort Callitriche sp. and flote-grass Glyceria fluitans) exhibited mean contents of metals. In species forming mats (Fontinalis antipyretica and Cladophora sp.), these contents were several times higher as compared to the previous species. The results of the performed research show that one of important factors, which influence the accumulation of trace metals in plants, is their ecological group (emergent – submerged) affiliation and the species classification within this group. Based on the evaluated data, we can recommend species of moss and algae that form mats eventually species growing in the very water flow for the future use in phytoremediation techniques.


1994 ◽  
Vol 45 (3) ◽  
pp. 669 ◽  
Author(s):  
PD Kemp ◽  
GJ Blair

The P efficiency of Italian ryegrass (Lolium multiflorum Lamk. cv Grasslands Tama) and phalaris (Phalaris aquatica L. cv Sirosa) was compared on both a temporal and ontogenetic basis. As ontogeny and growth are interrelated, such a comparison allowed the growth and physiological responses to P level of the two species to be separated from responses due to the species being at different ontogenetic stages at the time of comparison. Plants were grown from seed through to anthesis under P deficient and P sufficient conditions in soil in a glasshouse. The ontogenies of Italian ryegrass and phalaris were similar, but the rate of development of Italian ryegrass was greater at both P rates. P deficiency resulted in arrested reproductive development in phalaris. At both P levels shoot, root and total biomass and net P uptake per plant by Italian ryegrass were greater than by phalaris when the two species were compared on a temporal basis, but when compared on an ontogenetic basis the two species were similar. There were some differences in the allocation of P between the acid-soluble P, lipid P, and residue P fractions, but biomass production was not determined by the efficiency of P utilization. The superior biomass production of Italian ryegrass on a temporal basis was due to its greater seed size and rate of ontogeny rather than differences in photosynthetic rate, unit leaf rate, leaf area ratio or shoot: root ratio. Similarly, the greater P uptake per plant of Italian ryegrass on a temporal basis was driven by its greater plant size and faster root extension rate rather than by P uptake per unit root length. The level of vesicular arbuscular mycorrhizal (VAM) infection in the roots of the two species was similar under P deficiency but greater in phalaris under P sufficient conditions. Overall, the different temporal responses to P of Italian ryegrass and phalaris were largely related to their different rates of ontogeny and the interrelationships between ontogeny and growth rate rather than to differences in their physiology in relation to P acquisition and utilization.


2008 ◽  
Vol 22 (3) ◽  
pp. 431-434 ◽  
Author(s):  
Andrew T. Ellis ◽  
Gaylon D. Morgan ◽  
Thomas C. Mueller

Acetolactate synthase (ALS)–inhibiting herbicides are often used to control Italian ryegrass in winter wheat in Texas. An Italian ryegrass biotype near Waco, TX was evaluated for resistance to mesosulfuron in field and greenhouse experiments. Control of the biotype in the field was less than 10% with the label rate of mesosulfuron (15 g ai/ha). Greenhouse studies confirmed that the biotype was resistant to mesosulfuron; control of the biotype was less than 35% at 120 g ai/ha mesosulfuron. The herbicide dose required to reduce plant biomass of a susceptible and the Waco biotype by 50% (GR50) was 1.3 and 31 g ai/ha, respectively, indicating a resistance level of 24-fold in the Waco biotype. However, the Waco biotype was controlled with the acetyl-CoA carboxylase inhibitors diclofop and pinoxaden.


2020 ◽  
Vol 10 (23) ◽  
pp. 8560
Author(s):  
Shiferaw Alem ◽  
Petr Němec ◽  
Hana Habrová

Knowledge about the biomass productivity of trees planted in a rainwater harvesting structure, i.e., a trench (T), relative to a normal pit (P) on degraded land is scarce. The objective of this research paper is to compare the effect of T with P on the growth and biomass production of the Acacia saligna and Casuarina equisetifolia which were planted on degraded land. All the individual stems of both species in the T and P, their diameters at breast height (DBH) and heights in 2016 and 2020 were measured. Species-specific allometric equations were used to quantify the biomass production of the studied species. The t-tests were used for data analysis; both A. saligna and C. equisetifolia individuals planted in the T had higher DBH and height increment as compared with A. saligna and C. equisetifolia that were planted and grown in a P. The results also revealed significant differences on the mean DBH and height of A. saligna and C. equisetifolia planted in a T and P (p < 0.05). Between 2016 and 2020, the total biomass (TB) of A. saligna planted in a T and in a P increased significantly (p < 0.05) on average by 25.5 kg/tree and 7.7 kg/tree, respectively (p < 0.05). Similarly, the mean TB values of the C. equisetifolia planted in a T and a P between 2016 and 2020 increased significantly (p < 0.05) by 28.9 kg/tree and 13.1 kg/tree, respectively. Finally, establishing trenches to restore degraded lands was shown to facilitate growth and biomass production of planted species on degraded land.


Author(s):  
Syd Easton ◽  
David Baird ◽  
Gordon Baxter ◽  
Nick Cameron ◽  
Robyn Hainsworth ◽  
...  

Results are presented for 16 National Forage Variety Trials of annual and short-term hybrid ryegrass cultivars conducted in Waikato, Taranaki, Manawatu, Canterbury and Southland. In all, 30 cultivars (17 named, 13 experimental) were included. Cultivar effects were significant in all seasons, and for the annual totals. Cultivar differences were greatest in summer. Spring production accounted for over 40% of annual totals and summer production less than 20%, but it was summer production that was more closely correlated with the individual cultivar annual total. Over all trials and cultivars, regrowth in the second autumn accounted for 11% of the total for 12 months beginning in the winter following sowing. Comparing North Island sites with Canterbury sites, there was some indication of cultivar × region interaction, particularly in summer. Patterns of interaction of cultivars with trials were examined, and indicated that some cultivars can be grouped as having similar responses. Repeated trials at the same site were sometimes but not always consistent in ranking cultivars. The results indicate that some cultivars do perform consistently better than others, for particular seasons or for annual totals, so that the trials are a reliable indicator of which new experimental cultivars should be released to the market. The results also indicate that several trials are necessary to determine the merit of a wellperforming cultivar. The error associated with the mean of cultivars present in only one or two trials is high (standard deviation approaching 20% of the mean in some seasons). This may, however, be sufficient to eliminate poorer experimental lines from further consideration. Keywords: Italian ryegrass, hybrid ryegrass, cultivars, Lolium × boucheanum, Lolium multiflorum, pasture agronomy


Author(s):  
Ján Tomaškin ◽  
Ján Jančovič ◽  
Ľuboš Vozár ◽  
Judita Tomaškinová

Aim of the work was to determine the effect of different doses of mineral fertilization on belowground and aboveground plant biomass production of three different types of grasslands, to state R:S ratio (root:shoot) and turnover period of belowground plant biomass of grasslands. In the contribution, we assess production of underground biomass, tillering zone and aboveground biomass on three types of grasslands – permanent grassland (PG), over-sown grassland (OSG) and temporary grassland (TG) in sub-mountain area of central Slovakia. There were applied four levels of mineral nutrition in each grassland (non-fertilized variant, var. 30 kg.ha−1P and 60 kg.ha−1 K. var. 90 kg.ha−1 N + P30K60, var. 180 kg.ha−1 N + P30K60). The root biomass has the most significant share in the total biomass of grasslands (49.9–54.2 %), followed by tillering zone (33.3–36.0 %) and with the lowest share of aboveground biomass (11.9–16.8 %). A dominant share of root biomass and tillering zone ensure significant extra-productive functions of grasslands that contribute to the stability of agriculture landscape. We recorded the lowest amounts of root mass on TG (7.31 t.ha−1) and OSG (7.76 t.ha−1), the highest amounts on PG (8.52 t.ha−1). The specific nitrogen stimulating influence on root biomass production has been proven. Production of tillering zone was lower on OSG and TG (5.11 or 5.42 t.ha−1), significantly higher on PG (5.72 t.ha−1). We observed a significantly higher production of tillering zone with variants which were fertilized with nitrogen than on non-fertilized and PK fertilized. The lowest harvests of aboveground biomass were noticed on TG (5.80 t.ha−1), significantly higher on PG and OSG (6.35 or 6.54 t.ha−1). Mineral nutrition had a significant impact on production of aboveground biomass.R:S ratio of the assessed grasslands achieved the values from 4.02 to 5.16. Higher values on PG (5.16) are indicating its higher resistance to drought. Turnover time of root biomass was the longest on PG 3.5–5.0 years, on OSG and TG 2.5–3.5 years. Based on achieved results, we recommend using the fodder plants cultivation system on PG or OSG. Permanent grasslands are proved as ecologically more stable and more resistant to drought than temporary grasslands; they can together with optimal mineral nutrition provide adequate production of root biomass (8.5 t.ha−1) and a harvest of aboveground biomass (6.3 t.ha−1).


2018 ◽  
Vol 44 (2) ◽  
pp. 219-232 ◽  
Author(s):  
S.J Jang ◽  
K.R. Kim ◽  
Y.B. Yun ◽  
S.S. Kim ◽  
Y.I Kuk

Sign in / Sign up

Export Citation Format

Share Document