scholarly journals Accumulation of trace metals by aquatic macrophytes and their possible use in phytoremediation techniques

Author(s):  
Michaela Hillermannová ◽  
Radovan Kopp ◽  
Ivo Sukop ◽  
Tomáš Vítek

The aim of the performed research was to obtain knowledge on the ability of aquatic plants naturally growing at a site to absorb trace metals contained in bottom sediments and surface water. Furthermore, we compared differences in the accumulation of trace metals by the individual groups of aquatic plants (submerged and emergent) and assessed a possible use of the individual plant species in phytoremediation techniques. Representative samples of water, sediments and aquatic macrophytes were taken from three anthropogenically loaded streams in six monitoring cycles in several collection profiles differing in the distance from a source of contamination. The samples were analysed for the total content of selected trace metals (As, Cd, Pb, Al, Hg, Zn, Fe, Mn, Cr, Ni and Cu). For comparison, one profile at an unloaded site was sampled as well. The obtained results were subjected to multivariate statistical analysis of data. Increased contents of Fe, Al, Mn, Cr and Zn were detected in sediments and plant biomass at loaded sites, namely 2–3× higher than at the comparing site. The contents of metals in surface water samples were altogether below the detection limit of the analytical method. When evaluating the individual plant species, we can state that the lowest contents of metals were detected in shore species (reed canary grass Phalaroides arundinacea, wood club-rush Scirpus silvaticus and red dock Rumex aquaticus); plant species growing in the very water current (water star-wort Callitriche sp. and flote-grass Glyceria fluitans) exhibited mean contents of metals. In species forming mats (Fontinalis antipyretica and Cladophora sp.), these contents were several times higher as compared to the previous species. The results of the performed research show that one of important factors, which influence the accumulation of trace metals in plants, is their ecological group (emergent – submerged) affiliation and the species classification within this group. Based on the evaluated data, we can recommend species of moss and algae that form mats eventually species growing in the very water flow for the future use in phytoremediation techniques.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmad Farid Abu Bakar ◽  
Ismail Yusoff ◽  
Ng Tham Fatt ◽  
Faridah Othman ◽  
Muhammad Aqeel Ashraf

The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, andHydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that theE. densaandH. verticillataare able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand,C. piauhyensisshows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants,H. verticillatawas found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.


EDIS ◽  
2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Lynn Proenza ◽  
Michael Andreu

The purpose of this fact sheet is to help identify a few of the more common woody plant species found in Florida’s scrub ecosystems. In the individual plant descriptions, words that appear in bold font are considered to be key field characteristics that will aid in identification of the species. This 14-page fact sheet was written by Lynn Proenza and Michael Andreu and published by the UF Department of School of Forest Resources and Conservation, October 2012. http://edis.ifas.ufl.edu/fr373


2018 ◽  
Vol 29 (3) ◽  
pp. 521-531 ◽  
Author(s):  
Safaa Wasof ◽  
Jonathan Lenoir ◽  
Tarek Hattab ◽  
Aurélien Jamoneau ◽  
Emilie Gallet-Moron ◽  
...  

2007 ◽  
Vol 9 (4) ◽  
pp. 48-51 ◽  
Author(s):  
Barbara Wiśniowska-Kielian

The effect of bottom sediment on biomass production by Italian ryegrass and maize A two-year pot experiment (2005 and 2006) was conducted to estimate an effect of dredged bottom sediment from Rożnów Reservoir addition to the light, very acid soil on the plant biomass production. The sediment was applied in the amount from 1 to 20% of the substratum mass. Italian ryegrass (Lolium multiflorum L.) and maize (Zea mays L.) were cultivated as the successive test plants. The lowest amount of plant biomass was obtained on the soil (control) and each sediment addition to the substratum caused an increase of the biomass production, both tops as well as the roots of the plant. Larger sediment additions (7% and more) caused a significant increase of the yield, of both the individual plant species and the total biomass during the two years of the experiment. The bottom sediment added to the light, very acid soil distinctly improved the plant yielding and the way of biomass utilisation should be assessed on the basis of its chemical composition analysis.


2012 ◽  
Vol 13 (3) ◽  
pp. 244
Author(s):  
Ali Munawar ◽  
Farkhruddin Okte Leitu ◽  
Hendri Bustamam

Aquatic plant is an important component of a constructed wetland system for treating acid mine drainage (AMD).This study was conducted to investigate the remediation effects of planting three aquatic plants species on AMDquality in simulated wetland systems. Simulated wetland systems were constructed using 10-L plastic containersas growth media comprising mixed-organic substrates and aquatic plant species as planting treatments. Thetreatments involved individual plantings with Fimbristilys hispidula (Vahl) Konth, Mariscus compactus (Retz) Druce,and Typha angustifolia L., and mixed-planting with a combined three-plant species. As the control was the unplantedmedia. The plants were continuously flooded with very acidic AMD collected from a mine pit in PT TambangBatubara Bukit Asam, South Sumatra. During the experiment, the acidity (pH), oxidation reduction potential (Eh),and electrical conductivity (EC) of the flooding AMD were measured after 24 hours of the flooding, and thenbiweekly until the plants entered their reproductive stage. To estimate Fe removed by plants, AMD samples weretaken from both planted and unplanted systems for total dissolved Fe analyses. The data revealed some remediationeffects of planting aquatic plants on AMD in the wetland treatment systems. The presence of plants in the wetlandsystem appeared to induce oxygen diffusion to surrounding roots, which might result in Fe precipitation on rootsurface. Although no differences among planting treatments, Fe removals by plants highly correlated (R2=0.92)with the production of plant biomass.


2021 ◽  
Author(s):  
Alfonso Allen-Perkins ◽  
María Hurtado ◽  
David García-Callejas ◽  
Oscar Godoy ◽  
Ignasi Bartomeus

Ecological networks are a widely used tool to understand the dynamics of ecological communities in which plants interact with their pollinator counterparts. However, while most mutualistic networks have been defined at the species level, ecological processes, such as pollination, take place at the individual level. This recognition has led to the development of individual-based networks, yet current approaches only account for individuals of a single plant species due to conceptual and mathematical limitations. Here, we introduce a multilayer framework designed to depict the conspecific and heterospecific pollen flows mediated by floral visitors among plant individuals belonging to different species. Pollen transfer is modeled as a transport-like system, where an ensemble of conspecific plant-pollinator “circuits” are coupled through pollinators. With this physical conceptualization of ecological processes, we investigate how the reproductive success of plant individuals is affected by the overall dynamics of the whole multilayer network (macrostructure), as well as by their local position within the network (mesostructure). To illustrate this multiscale analysis, we apply it to a dataset of nine well-resolved individual plant-pollinator interaction networks from annual plant grasslands. Our results show that the resulting individual-based networks are highly modular, with insect visitors effectively connecting individuals of the same and different plant species. We also obtain empirical evidence that network structure is critical for modulating individual plant reproduction. In particular, the mesoscale level is the best descriptor of plant reproductive success, as it integrates the net effect of local heterospecific and conspecific interactions on seed production of a given individual. We provide a simple, but robust set of metrics to scale down network ecology to functioning properties at the individual level, where most ecological processes take place, hence moving forward the description and interpretation of multitrophic communities across scales.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3016 ◽  
Author(s):  
Lucie Moeller ◽  
Aline Bauer ◽  
Harald Wedwitschka ◽  
Walter Stinner ◽  
Andreas Zehnsdorf

Several thousand metric tonnes of aquatic biomass are removed from water bodies every year, so that these waters can continue to be used for ship and boat traffic and for leisure activities. The mowed material is generally disposed off without any further use. Therefore, the crop properties of samples from 39 weed control measures all over Germany were examined to assess the suitability of aquatic plant biomass as a substrate for anaerobic digestion systems. Analysis of the crop samples consisted of the identification of plant species and the evaluation of sediment contents and concentrations of macroelements. The methane yield was determined for selected aquatic plants. Analysis revealed a carbon/nitrogen ratio (C/N) of between 10 and 20 in 74% of samples. The concentrations of nitrogen and phosphorous in the samples were comparable to grass silages. With regard to heavy metal concentrations, the threshold values for biowaste for nickel, zinc, and cadmium were exceeded in three samples. There were no significant seasonal differences in substrate characteristics and qualities. The specific methane yields of individual aquatic plants were between 142 and 372 LCH4/kg volatile solids (VS). The results of this study showed that aquatic macrophytes can be used as substrates in anaerobic digestion plants without any restrictions.


2021 ◽  
Vol 22 (13) ◽  
pp. 7181
Author(s):  
Seong-Im Park ◽  
Hyeok Jin Kwon ◽  
Mi Hyeon Cho ◽  
Ji Sun Song ◽  
Beom-Gi Kim ◽  
...  

The AP2/EREBP family transcription factors play important roles in a wide range of stress tolerance and hormone signaling. In this study, a heat-inducible rice ERF gene was isolated and functionally characterized. The OsERF115/AP2EREBP110 was categorized to Group-IIIc of the rice AP2/EREBP family and strongly induced by heat and drought treatment. The OsERF115/AP2EREBP110 protein targeted to nuclei and suppressed the ABA-induced transcriptional activation of Rab16A promoter in rice protoplasts. Overexpression of OsERF115/AP2EREBP110 enhanced thermotolerance of seeds and vegetative growth stage plants. The OsERF115/AP2EREBP110 overexpressing (OE) plants exhibited higher proline level and increased expression of a proline biosynthesis P5CS1 gene. Phenotyping of water use dynamics of the individual plant indicates that the OsERF115/AP2EREBP110-OE plant exhibited better water saving traits under heat and drought combined stress. Our combined results suggest the potential use of OsERF115/AP2EREBP110 as a candidate gene for genetic engineering approaches to develop heat and drought stress-tolerant crops.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


Sign in / Sign up

Export Citation Format

Share Document