scholarly journals Badenian Ostracoda from the Pokupsko area (Banovina, Croatia)

2011 ◽  
Vol 62 (5) ◽  
pp. 447-461 ◽  
Author(s):  
Valentina Hajek-Tadesse ◽  
Božo Prtoljan

Badenian Ostracoda from the Pokupsko area (Banovina, Croatia)In this paper we present the results of the investigations on the Badenian (Middle Miocene) ostracods from the Pokupsko area. For the first time the presence of Badenian aged sediments in Croatia can be supported by the occurrence of ostracod biozonal markers. Four Badenian ostracod zones are established: Lower Badenian Biozone NO7Acanthocythereis hystrix-Bythocypris lucida, Middle Badenian Biozone NO8Eocytheropteron inflatum-Olimfalunia spinulosa, and the two Upper Badenian Biozones NO9Neomonoceratina laskarevi-Miocyprideis sarmatica elongataand NO10Carinocythereis carinata-Phlyctenophora farkasi.On the basis of the generally accepted paleoecology of selected genera, we identified the following ostracod faunas: shallow-water marine, shallow-water brackish-marine, shallow-water reef, and deep-water marine. The paleontological and trace element analyses suggest that the Pokupsko ostracod fauna lived in shallow (50 m deep), warm, and limpid waters, connected to a deeper sea and occasionally exposed to freshwater inflows.

2018 ◽  
Vol 92 (4) ◽  
pp. 681-712
Author(s):  
William I. Ausich ◽  
Elizabeth C. Rhenberg ◽  
David L. Meyer

AbstractThe Batocrinidae are characteristic faunal elements in Lower Mississippian shallow-marine settings in North America. Recent delineation of objectively defined genera allows a reexamination of batocrinid species and their distribution in the Fort Payne Formation (early Viséan, late Osagean), a well-studied array of carbonate and siliciclastic facies. The Fort Payne batocrinid fauna has 14 species assigned to six genera, plus hybrid specimens.Magnuscrinus spinosus(Miller and Gurley, 1895a) is reassigned to its original placement inEretmocrinus. Hybrid specimens (Ausich and Meyer, 1994) are regarded asEretmocrinus magnificus×Eretmocrinus spinosus.Macrocrinus casualisis the dominant species ofMacrocrinusin the Fort Payne, andM.mundulusandM.strotobasilarisare recognized in the Fort Payne Formation for the first time.Magnuscrinus cumberlandensisn. sp. is named, 13 species are designated as junior synonyms, the name for the hybrid specimens is changed toEretmocrinus magnificus×Eretmocrinus spinosus, and the previous occurrences of two species in the Fort Payne are rejected. The Eastern Interior Seaway was a mixed carbonate-siliciclastic setting with both shallow- and deep-water epicontinental sea facies ranging from relatively shallow autochthonous green shales to deep-water turbidite facies.Dizygocrinuswas restricted to shallow-water carbonate and siliciclastic facies,Eutrochocrinuswas restricted to shallow-water carbonate facies, andMagnuscrinuswas restricted to deep-water facies. Species distributions varied fromAbatocrinus steropes,Alloprosallocrinus conicus,Macrocrinus mundulus, andUperocrinus nashvillae, which occurred throughout the Eastern Interior Seaway, to species that were restricted to a single facies.Eretmocrinus magnificus,Alloprosallocrinus conicus, andUperocrinus robustuswere the dominant batocrinids in the Fort Payne Formation.UUID:http://zoobank.org/703aafd8-4c73-4edc-9870-e2356e2d28b8


2015 ◽  
Vol 66 (3) ◽  
pp. 217-233 ◽  
Author(s):  
Matúš Hyžný ◽  
Mathias Harzhauser ◽  
Wolfgang Danninger

AbstractDecapod crustaceans from the Ottnangian (middle Burdigalian, Lower Miocene) of the Western and Central Paratethys remain poorly known. In this study, we review and re-describe mud shrimps (Jaxea kuemeli), ghost shrimps (Gourretiasp.,Calliax michelottii) and brachyuran crabs of the families Leucosiidae, Polybiidae and Portunidae. A dorsal carapace of the genusCalliaxis reported for the first time in the fossil record. Re-examination of the type material ofRandallia strouhali(Leucosiidae) andGeryon ottnangensis(Geryonidae) resulted in a transfer of these species intoPalaeomyra(Leucosiidae) andLiocarcinus(Polybiidae), respectively.Achelous vindobonensis, originally described as a chela of a portunid crab, probably belongs to a member of Polybiidae and is provisionally treated asLiocarcinussp. Only two species,J. kuemeliandC. michelottii, are also known from the Karpatian, the succeeding Paratethyan stage. In most cases, the decapod assemblages of the Ottnangian consist of rather shallow-water taxa whereas the assemblages of the Karpatian consist of deep-water taxa from the middle and outer shelf. The Central Paratethyan assemblages show similarities in genus composition to the Proto-Mediterranean and recent Indo-Pacific regions.Gourretiasp. represents the earliest occurrence of the respective genus in the fossil record. The Oligocene–Early Miocene appearance ofPalaeomyraandLiocarcinusin the circum-Mediterranean implies that sources of present-day diversity hotspots in the Indo-Pacific trace to the Western Tethys (as for other decapod genera), although coeval decapod assemblages in the Indo-Pacific remain poorly known.


1995 ◽  
Vol 9 (1) ◽  
pp. 149
Author(s):  
J Froman

Sixteen species of Haplosclerida and Petrosida are described from the reefs and lagoon of New Caledonia. Five species are new and two species are reported for the first time from New Caledonia. Nine previously described species were also found in this study and extra characters are reported, or additional locality and habitat records provided. The new species belong to the Haplosclerida : Chalinidae, three species; Niphatidae, one species; and Callyspongiidae, one species. New records of Xestospongia bergquistia and X. exigua (Petrosida : Petrosidae) are reported. Some of the species described have reduced spiculation; this reduction in amount of silica in the skeleton, and increased fibre development, may be related to water temperature. The proportion of endemic species within the Haplosclerida and Petrosida shallow water fauna is 48% and 75% in deep water. Non-endemic species have closest affinities to the Australian fauna.


Author(s):  
Denis Audo ◽  
Günter Schweigert ◽  
Sylvain Charbonnier ◽  
Joachim T. Haug

Polychelidan lobsters (Decapoda: Polychelida) are crustaceans with extant species which are restricted to deep water environments. Fossil species, however, used to live in more varied palaeoenvironments, from shallow water to deep water, and were more diverse morphologically. We redescribe two species of polychelidan lobsters, the Late Triassic Rosenfeldia triasica Garassino, Teruzzi & Dalla Vecchia, 1996 and the Late Jurassic Eryon oppeli Woodward, 1866, recently assigned to the same genus, Rosenfeldia, based upon only a few characters. Our investigation of all available material of both species leads us to distinguish these two species and to erect Rogeryon gen. nov. to accommodate Eryon oppeli. The palaeobiology of both species is interpreted for the first time. Rosenfeldia triasica with its stout first pereiopods and mandibles with both incisor and molar processes (documented for the first time in Polychelida) was benthic and probably fed either on slow-moving sedentary preys or was a scavenger. Rogeryon oppeli gen. et comb. nov. was benthic, visually adapted to shallow water palaeoenvironments, and possibly had a diet similar to that of slipper lobsters and horseshoe crabs. The redescription of these two species highlights the palaeobiological diversity of fossil polychelidans.


2020 ◽  
pp. jgs2020-170
Author(s):  
P. Cózar ◽  
I. D. Somerville

Analysis of foraminiferal assemblages from the Viséan-Serpukhovian boundary interval in Britain has led to the recognition that levels correlated with the first occurrence of Lochriea ziegleri at the base of the Serpukhovian Stage can be established by the foraminifer Neoarchaediscus gregorii in England and Scotland, which first occurs from the Single Post and Cockleshell limestones in northern England and laterally equivalent levels, as well as Asteroarchaediscus bashkiricus, and A. rugosus (except for South Wales). Contrary to some previous studies, the base of the Serpukhovian does not equate with the base of the Namurian (Pendleian Substage), but lies approximately at the early-late Brigantian boundary, based on the first occurrence of Neoarchaediscus postrugosus. Four foraminiferal assemblages are distinguished in the early Serpukhovian (7-10) and four assemblages in the late Serpukhovian (11-14). Despite the contrast in facies, it is now recognised for the first time that throughout the Midland Valley of Scotland, northern England and South Wales. the foraminiferal assemblages from shallow-water platform facies are completely compatible with the ammonoid subzones from deep-water basinal facies, with no apparent mismatches. There appears to be close comparability of foraminiferal assemblages and first appearance datums of marker species with most of the international foraminiferal zonal schemes in Russia.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5240408


Zootaxa ◽  
2018 ◽  
Vol 4422 (3) ◽  
pp. 301 ◽  
Author(s):  
BORIS SIRENKO

Sixteen deep-sea polyplacophoran species are reported in this article, fifteen of which were found for the first time in the waters of Taiwan. Two of these species, Leptochiton taiwanensis n. sp. and L. wui n. sp., are described as new to science. Several of these species are distributed near Japan and in other areas of the western Pacific Ocean. Eight of the reported species live and feed on sunken wood. A survey of the polyplacophorans of Taiwan has also been conducted. The updated list of chitons collected near Taiwan at all depths contains 34 species. Seventeen of these species are shallow-water and seventeen species are deep-water chitons. 


1989 ◽  
Vol 63 (4) ◽  
pp. 443-448 ◽  
Author(s):  
Richard L. Squires

Praehyalocylis cretacea (Blanckenhorn, 1889), a pteropod previously known only from upper Eocene to middle Miocene strata in Europe and Turkey, is reported for the first time in similar age rocks in the northwestern United States. Of the 238 specimens, most occur as molds and casts in concretions in deep-water deposits from the Keasey Formation in Oregon, and from the Quimper Sandstone, Blakeley Formation, Pysht Formation, and Astoria Formation of Washington. Praehyalocylis has not been reported previously from the Western Hemisphere.Clio berglundi n. sp. and C. goederti n. sp. are reported from upper Oligocene to lower Miocene rocks in Washington. Eleven specimens were found mostly as internal molds in concretions in deep-water deposits of the Lincoln Creek, Pysht, and Astoria Formations of Washington. Cenozoic species of Clio have not been reported previously from the West Coast of the United States.


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


Author(s):  
Svetlana Rubtsova ◽  
Svetlana Rubtsova ◽  
Natalya Lyamina ◽  
Natalya Lyamina ◽  
Aleksey Lyamin ◽  
...  

The concept of a new approach to environmental assessment is offered in the system of integrated management of the resource and environmental safety of the coastal area of the Black Sea. The studies of the season and daily changeability in the bioluminescence field in the Sevastopol coastal waters has been conducted. For the first time considerable differences in the bioluminescence field seasonal changes in the surface and deep water layers and the reasons conditioning this phenomenon have been shown, using a method of multidimensional statistical analysis. The bioluminescence field vertical profile change in the Black sea coastal waters in the autumn period at night has been studied. It has been shown that according to the character of bioluminescence parameters dynamics a water column can be divided into layers: upper (0 – 35 m) and deep water (36 – 60 m). It has been revealed that life rhythms of the plankton community are the main reason for the bioluminescence field intensity variability. It has been revealed that 14-hour periodicity of the bioluminescence field is related to the changes in light and its variations with 2,5…4,5 hours are conditioned by planktonts endogenous daily rhythms. And here biotic factors effect mostly periodicity of the bioluminescence field intensity increase and fall down at the dark time of the day. Abiotic factors are of less importance in circadian rhythmic of the bioluminescence field in the neritic zone.


2013 ◽  
Vol 150 (5) ◽  
pp. 767-782 ◽  
Author(s):  
MASSIMO DELFINO ◽  
TORSTEN M. SCHEYER ◽  
FRANCESCO CHESI ◽  
TAMARA FLETCHER ◽  
RICHARD GEMEL ◽  
...  

AbstractPsephophorus polygonus Meyer, 1847, the first fossil leatherback turtle to be named, was described on the basis of shell ossicles from the middle Miocene (MN6–7/8?) of Slovakia. The whereabouts of this material is uncertain but a slab on display at the Naturhistorisches Museum Wien is considered the neotype. We rediscovered further type locality ossicles in four European institutions, re-evaluated their gross morphology and described for the first time their microstructure by comparing them with Dermochelys coriacea, the only living dermochelyid turtle. The gross morphology is congruent with that already described for P. polygonus, but with two significant exceptions: the ridged ossicles of P. polygonus may have a distinctly concave ventral surface as well as a tectiform shape in cross-section. They do not develop the external keel typical of many ossicles of D. coriacea. Both ridged and non-ridged ossicles of P. polygonus are characterized by compact diploe structures with an internal cortex consisting of a coarse fibrous meshwork, whereas the proportionately thinner ossicles of D. coriacea tend to lose the internal cortex, and thus their diploe, during ontogeny. The ossicles of both P. polygonus and D. coriacea differ from those of other lineages of amniotes whose carapace is composed of polygonal ossicles or platelets, in having growth centres situated at the plate centres just interior to the external bone surface and not within the cancellous core or closer to the internal compact layer. The new diagnosis of P. polygonus allows us to preliminarily re-evaluate the taxonomy of some of the Psephophorus-like species. Despite some macro- and micromorphological differences, it seems likely that Psephophorus was as cosmopolitan as extant Dermochelys and had a broadly similar ecology, with a possible difference concerning the dive depth.


Sign in / Sign up

Export Citation Format

Share Document