Modern Hybrid Joints in Aerospace: Modelling and Testing / Nowoczesne Połaczenia Hybrydowe W Lotnictwie: Modelowanie I Badania Eskperymentalne

2013 ◽  
Vol 58 (1) ◽  
pp. 163-169 ◽  
Author(s):  
T. Sadowski ◽  
T. Balawender ◽  
R. Sliwa ◽  
P. Golewski ◽  
M. Knec

The aim of the paper is to review different types of modern hybrid joints applied in aerospace. We focused on three particular cases: 1) spot welding - adhesive, 2) rivet-bonded and 3) clinch-bonded joints. The numerical models presented in the paper for these joints describe their complex behaviour under mechanical loading. The numerical calculations performed using ABAQUS code were compared to experimental results obtained by application of the Digital Image Correlation system (DIC) ARAMIS. The results investigated within the paper lead to the following major conclusions: - the strengthening of joints by application of adhesive significantly improve static strength, - the final failure of the joined structural system significantly depends on the surface adhesive area, - the stiffening effects of the hybrid joint lead to higher reliability and durability of the structural joints.

2019 ◽  
Vol 9 (6) ◽  
pp. 1253 ◽  
Author(s):  
Jolien Vervloet ◽  
Tine Tysmans ◽  
Michael El Kadi ◽  
Matthias De Munck ◽  
Panagiotis Kapsalis ◽  
...  

Sandwich panels with textile-reinforced cement (TRC) faces merge both structural and insulating performance into one lightweight construction element. To design with sandwich panels, predictive numerical models need to be thoroughly validated, in order to use them with high confidence and reliability. Numerical bending models established in literature have been validated by means of local displacement measurements, but are missing a full surface strain validation. Therefore, four-point bending tests monitored by a digital image correlation system were compared with a numerical bending model, leading to a thorough validation of that numerical model. Monitoring with a digital image correlation (DIC) system gave a highly detailed image of behaviour during bending and the strains in the different materials of the sandwich panel. The measured strains validated the numerical model predictions of, amongst others, the multiple cracking of the TRC tensile face and the shear deformation of the core.


2012 ◽  
Vol 57 (4) ◽  
pp. 1127-1135 ◽  
Author(s):  
T. Sadowski ◽  
E. Zarzeka-Raczkowska

The hybrid adhesive bonded and riveted joints have wider and wider application in different branches of engineering: aerospace, mechanical, civil etc. The hybrid joints’ strength is 1.5 to 3 times higher than only adhesive bonded joints’ strength. The hybrid joints characterize higher reliability during long-term working. In this article we present the influence of rivets’ lay-out geometry on the hybrid adhesive bonded/riveted joints response to mechanical loading. Experimental research was carried using 3-D digital image correlation system ARAMIS. This system enables monitoring of the deformation processes of the hybrid joint specimen up to failure. We analysed the state of deformation of the adhesive bonded double-lap joints reinforced by different numbers of rivets. The hybrid joint specimens were subjected to the uniaxial tensile test. Moreover, the influence of geometry of individual number of rivets’ layout (rivets arranged in one or more rows) for hybrid joint strength was studied. Experimental research was completed and supported by the computer simulations of the whole deformation processes of metal layers (aluminum), adhesive layers and rivets. Numerical simulations were conducted with the ABAQUS programme. The analysis of stress concentrations in different parts of the hybrid joint and their behaviour up to failure were investigated. Finally, the analysis and the comparison of the obtained results confirmed the influence of rivets’ lay-out geometry not only on rivets joints but also on the hybrid adhesive bonded/riveted joints.


2014 ◽  
Vol 601 ◽  
pp. 25-28 ◽  
Author(s):  
Tomasz Sadowski ◽  
Marcin Kneć ◽  
Przeymysław Golewski

Hybrid joining of structural parts (e.g. [3-1) is relatively new approach to create more safe and reliable connection of the critical part of engineering structures. In this paper we consider hybrid joint consisting of 2 aluminum stripes and an angle bar (e.g. [7]) joined by 2 simple techniques: hot spot welding (HSW) and adhesive bonding (AB). The samples were subjected to fatigue tests in order to find fatigue response at different level of load amplitude. New method of plastic deformation measurement during fatigue was proposed with application of Digital Image Correlation (DIC) method. Numerical analysis of the hybrid joint fatigue response was proposed in the paper taking into account both: gradual degradation of the bonding layer and plastic damage in the aluminium strips due to cyclic loading.


Author(s):  
W. Tillmann ◽  
L. Wojarski ◽  
T. Henning

AbstractEven though the buildup rate of laser powder bed fusion processes (LPBF) has steadily increased in recent years by using more and more powerful laser systems, the production of large-volume parts is still extremely cost-intensive. Joining of an additively manufactured complex part to a high-volume part made of conventional material is a promising technology to enhance economics. Today, constructors have to select the most economical joining process with respect to the individual field of application. The aim of this research was to investigate the hybrid joint properties of LBPF and conventionally casted 18MAR300 nickel maraging steel depending on the manufacturing process and the heat treatment condition. Therefore, the microstructure and the strength of the hybrid joints manufactured by LPBF or vacuum brazing were examined and compared to solid material and joints of similar material. It was found that the vacuum-brazed hybrid joints using a 50.8-μm-thick AuNi18 foil provide a high tensile strength of 904 MPa which is sufficient for a broad field of application. Furthermore, the additively manufactured hybrid samples offered with 1998 MPa a tensile strength more than twice as high but showed a considerable impact of buildup failures to the strength in general.


Author(s):  
Eduardo André de Sousa Marques ◽  
Alireza Akhavan-Safar ◽  
Raul Duarte Salgueiral Gomes Campilho ◽  
Ricardo João Camilo Carbas ◽  
Lucas Filipe Martins da Silva

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3805 ◽  
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Artur Oziębło ◽  
Krzysztof Perkowski ◽  
...  

In this study, we analyzed the mechanical properties of selectively laser melted (SLM) steel obtained via different modifications during and after the manufacturing process. The aim was to determine the effects of precipitation heat treatment on the mechanical properties of elements additively manufactured using three different process parameters. Some samples were additionally obtained using hot isostatic pressing (HIP), while some were treated using two different types of heat treatment and a combination of those two processes. From each manufactured sample, a part of the material was taken for structural analysis including residual stress analysis and microstructural investigations. In the second part of the research, the mechanical properties were studied to define the scleronomic hardness of the samples. Finally, tensile tests were conducted using a digital image correlation (DIC) test and fracture analysis. The treated samples were found to be significantly elongated, thus indicating the advantages of using precipitation heat treatment. Additionally, precipitation heat treatment was found to increase the porosity of samples, which was the opposite compared to HIP-treated samples.


2018 ◽  
Vol 196 ◽  
pp. 01032 ◽  
Author(s):  
Andrzej Piotrowski ◽  
Marcin Gajewski ◽  
Cezary Ajdukiewicz

In the presented paper the local instabilities occurring in compression test of perforated thin-walled bars of low slenderness are observed using digital image correlation system ARAMIS. The tested samples slenderness is so low, that from theoretical point of view we are dealing with compression tests of some perforated shells. The samples are made from typical low carbon steel, which has to be treated as elasto-plastic material. Because of that, the final geometry of the sample (after unloading) is also analysed giving a good data for calibration of the theory of elasto-plasticity for large deformations. In analysed cases the total strain values are not exceptionally large, while local rotation (and permanent deformations) have significant values.


Sign in / Sign up

Export Citation Format

Share Document