scholarly journals Visualization of heat transport in heat pipes using thermocamera

2010 ◽  
Vol 31 (4) ◽  
pp. 125-132 ◽  
Author(s):  
Patrik Nemec ◽  
Alexander Čaja ◽  
Richard Lenhard

Visualization of heat transport in heat pipes using thermocamera Heat pipes, as passive elements show a high level of reliability when taking heat away and they can take away heat flows having a significantly higher density than systems with forced convection. A heat pipe is a hermetically closed duct, filled with working fluid. Transport of heat in heat pipes is procured by the change of state of the working fluid from liquid state to steam and vice versa and depends on the hydrodynamic and heat processes in the pipe. This study have been focused on observing the impact these processes have on the heat process, the transport of heat within the heat pipe with the help of thermovision. The experiment is oriented at scanning the changes in the surface temperatures of the basic structural types of capillary heat pipes in vertical position.

Volume 3 ◽  
2004 ◽  
Author(s):  
R. Kempers ◽  
A. Robinson ◽  
C. Ching ◽  
D. Ewing

A study was performed to experimentally characterize the effect of fluid loading on the heat transport performance of wicked heat pipes. In particular, experiments were performed to characterize the performance of heat pipes with insufficient fluid to saturate the wick and excess fluid for a variety of orientations. It was found that excess working fluid in the heat pipe increased the thermal resistance of the heat pipe, but increased maximum heat flux through the pipe in a horizontal orientation. The thermal performance of the heat pipe was reduced when the amount of working fluid was less than required to saturate the wick, but the maximum heat flux through the heat pipe was significantly reduced at all orientations. It was also found in this case the performance of this heat pipe deteriorated once dry-out occurred.


Author(s):  
S. B. Liang ◽  
G. P. Xu

Self-sustainable motions of the slug flow in oscillating heat pipes have been investigated in the paper. Thin film condensation in the capillary channels of the condenser of the oscillating heat pipes was studied. Instability of the thin liquid film on the characteristics of heat pipes was analysed. The extra thermal resistance caused by the thickness of the thin liquid film was taken into account for the numerical simulation of the oscillatory motions of the slug flow in the heat pipes. Saturated temperatures and pressures of the working fluid in the condenser were obtained. Thermoacoustic theory was applied to calculate heat transport through the adiabatic section of the heat pipes. Experimental studies were carried out to understand the heat transfer behaviours of heat pipes. One heat pipe with the working fluid of HFC-134a was evaluated. The heat pipe is made of aluminium plate and has the width of 50 mm and thickness of 1.9 mm. Numerical and experimental results relevant to the heat transport capability of the heat pipe were analysed and compared.


2011 ◽  
Vol 15 (3) ◽  
pp. 879-888 ◽  
Author(s):  
Rathinasamy Senthilkumar ◽  
Subaiah Vaidyanathan ◽  
Sivaramanb Balasubramanian

This paper discuses the use of self rewetting fluids in the heat pipe. In conventional heat pipes, the working fluid used has a negative surface-tension gradient with temperature. It is an unfavourable one and it decreases the heat transport between the evaporator section and the condenser section. Self rewetting fluids are dilute aqueous alcoholic solutions which have the number of carbon atoms more than four. Unlike other common liquids, self-rewetting fluids have the property that the surface tension increases with temperature up to a certain limit. The experiments are conducted to improve the heat-transport capability and thermal efficiency of capillary assisted heat pipes with the self rewetting fluids like aqueous solutions of n-Butanol and n-Pentanol and its performance is compared with that of pure water. The n-Butanol and n-Pentanol are added to the pure water at a concentration of 0.001moles/lit to prepare the self rewetting fluids. The heat pipes are made up of copper container with a two-layered stainless steel wick consisting of mesh wrapped screen. The experimental results show that the maximum heat transport of the heat pipe is enhanced and the thermal resistances are considerably decreased than the traditional heat pipes filled with water. The fluids used exhibit an anomalous increase in the surface tension with increasing temperature.


2005 ◽  
Author(s):  
John D. Bernardin

Increases in the power density of electronics and the corresponding decreases in packaging space have driven the development and enhancement of numerous electronics cooling strategies. The design of cooling systems for electronics are particularly challenging in spacecraft environments where there exists the additional requirements of minimal mass and volume, high reliability, reduced complexity and number of moving parts, and ability to operate in a reduced or gravity-free environment. One cooling technique that has proven to satisfy these demanding and integrated requirements for spacecraft electronics cooling applications, involves the use of heat pipes. The heat pipe is a passive heat transport device that requires no moving parts, is highly compact and reliable, and is an efficient mover of thermal energy in reduced gravity environments. Despite all of these positive features, heat pipes do have limitations and functional characteristics that designers must be keenly aware of when incorporating them into the development of electronic cooling systems. These include, in part, limits on the heat transport capacity and operational temperature, as well as performance variations between seemingly identical heat pipes due to contamination or manufacturing flaws. This paper discusses thermal analyses and performance testing of commercial copper heat pipes that utilize a sintered copper wick with either methanol or water as the working fluid. First, the electronic cooling application, thermal operating requirements, and commercial heat pipe designs are introduced. Next, the models and analyses used to predict the heat transport limits for the heat pipes are discussed. Following this, the experimental apparatus and procedures used to characterize the thermal performance of the heat pipes are presented. Finally, with the aid of empirical data, assessments of the thermal performance of each heat pipe, the range of performance variation between heat pipes, as well as the applicability and accuracy of the analytical performance models are provided.


Author(s):  
Sukhvinder Kang ◽  
Randy Cook ◽  
Dave Gailus

In recent years heat pipes have become widely use in high performance air-cooled heat sinks for cooling electronics equipment. Such heat sinks rely on the heat pipes to collect heat from small high heat flux sources, transport it over some distance, and spread the heat efficiently to a volume of fins where the heat is transferred to an air flow stream by convection. When used effectively, heat pipes enable heat sinks that have low thermal resistance and low mass. For the heat sink to be successful, the heat pipes must also have sufficient heat transport capacity. To deliver their design thermal resistance and heat transport capacity, heat pipes need to be manufactured with well-controlled wick characteristics, working fluid fill volume and minimal residual non-condensable gases. It is standard procedure for heat pipe manufacturing companies to test 100 percent of the heat pipes they manufacture. The most commonly used production test is designed to rapidly show whether or not a heat pipe functions as a heat pipe. On a sampling basis, manufacturers also test the heat transport capacity of their heat pipes. There is no rapid test that can verify that any specific heat pipe will achieve the desired operational life — this is achieved by validation of the manufacturing process and adequate manufacturing process controls. In this paper we describe a test method and apparatus that can be used to rapidly test whether a heat pipe has the required thermal resistance at the specified heat transport capacity. The apparatus is capable of testing heat pipes over a wide range of diameters and lengths in their end use configuration (with bends and flattened regions). The key design criteria for the test apparatus is described and test data for several application specific heat pipes is presented.


The basic aim of this study is to study the impact of nanofluids such as (Al2O3+Distilled water) in complete liquid form by dispensing aluminium oxide (fluid form) in base fluidand also to investigate the thermal performance of heat pipe solar collector using nanofluids under real operating conditions by theoretically and experimentally.The experimental setup is made with heat pipes and real time temperatures are measured for experimental efficiency. The theoretical investigation is to be done by using Computational Fluid Dynamics (CFD).The main innovation done in this experiment is the nanofluid prepared in complete fluid form without particles suspension to avoid the settling of nanoparticles in thermo syphon setup.For long term applications, we opted this method of preparing the fluid. The operating parameters to be considered are solar intensity, effect of tilt angle and effect of working fluid. Finally, the experimental output is to be compared with the theoretical one (CFD). The efficiency of theoretical was higher than experimental because ofassumptions considered in CFD. The nanofluid filled with 25% of total capacity of heat pipe i.e. 25ml/pipe.Heat pipes are best energy conserving technology for solar energy conversion.


2013 ◽  
Vol 651 ◽  
pp. 728-735 ◽  
Author(s):  
Nandy Putra ◽  
Wayan Nata Septiadi ◽  
Ridho Irwansyah

Heat pipes have been widely used as one of the alternative methods to absorb more heat in the cooling systems of electronic devices. One of the ways to improve the thermal performance of heat pipes is to change the fluid transport properties and flow features of working fluids using nanofluids. The purpose of this research was to investigate the effect of Al2O3-water nanofluids concentration and fluid loading to the thermal resistance between evaporator and adiabatic section of copper straight sintered copper powder wick heat pipe. In this research, sintered powder wick heat pipes were manufactured and tested to determine the thermal resistance of the sintered powder wick heat pipes which charged with water and Al2O3-water nanofluids. The concentrations of the nanoparticles were varied from 1 %, 3% and 5 % of the volume of the base fluid. The result shows that Al2O3-water nanofluids have the ability to reduce the temperature at the evaporator section and the thermal resistance of heat pipe. The increase in nanofluids concentration could give significant effect to reduce the thermal resistance of heat pipes. The amount of working fluid charged into the heat pipes also gives an effect in heat pipes thermal resistance, where the thermal resistance was lower when the heat pipe was charged with 60% of its volume. The formation of coating layer at sintered powder wick also can fixed the wick porosity and cause roughness on the surface of granular pore which the increased of capillary could give the effect for enhancement of heat pipe performance.


1998 ◽  
Vol 120 (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
J. M. Ha ◽  
G. P. Peterson

The original analytical model for predicting the maximum heat transport capacity in micro heat pipes, as developed by Cotter, has been re-evaluated in light of the currently available experimental data. As is the case for most models, the original model assumed a fixed evaporator region and while it yields trends that are consistent with the experimental results, it significantly overpredicts the maximum heat transport capacity. In an effort to provide a more accurate predictive tool, a semi-empirical correlation has been developed. This modified model incorporates the effects of the temporal intrusion of the evaporating region into the adiabatic section of the heat pipe, which occurs as the heat pipe approaches dryout conditions. In so doing, the current model provides a more realistic picture of the actual physical situation. In addition to incorporating these effects, Cotter’s original expression for the liquid flow shape factor has been modified. These modifications are then incorporated into the original model and the results compared with the available experimental data. The results of this comparison indicate that the new semiempirical model significantly improves the correlation between the experimental and predicted results and more accurately represents the actual physical behavior of these devices.


Author(s):  
D. Sugumar ◽  
Kek Kiong Tio

A micro heat pipe will operate effectively by achieving its maximum possible heat transport capacity only if it is to operate at a specific temperature, i.e., design temperature. In reality, micro heat pipe’s may be required to operate at temperatures different from the design temperature. In this study, the heat transport capacity of an equilateral triangle micro heat pipe is investigated. The micro heat pipe is filled optimally with working fluid for a specific design temperature and operated at different operating temperatures. For this purpose, water, pentane and acetone was selected as the working fluids. From the numerical results obtained, it shows that the optimal charge level of the micro heat pipe is dependent on the operating temperature. Furthermore, the results also shows that if the micro heat pipe is to be operated at temperatures other than its design temperature, its heat transport capacity is limited by the occurrence of flooding at the condenser section or dryout at the evaporator section, depending on the operating temperature and type of working fluid. It is observed that when the micro heat pipe is operated at a higher temperature than its design temperature, the heat transport capacity increases but limited by the onset of dryout at the evaporator section. However, the heat transport capacity decreases if it is to be operated at lower temperatures than its design temperature due to the occurrence of flooding at condenser end. From the results obtained, we can conclude that the performance of a micro heat pipe is decreased if it is to be operated at temperatures other than its design temperature.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Matthew R. Pearson ◽  
Jamal Seyed-Yagoobi

Heat pipes are well known as simple and effective heat transport devices, utilizing two-phase flow and the capillary phenomenon to remove heat. However, the generation of capillary pressure requires a wicking structure and the overall heat transport capacity of the heat pipe is generally limited by the amount of capillary pressure generation that the wicking structure can achieve. Therefore, to increase the heat transport capacity, the capillary phenomenon must be either augmented or replaced by some other pumping technique. Electrohydrodynamic (EHD) conduction pumping can be readily used to pump a thin film of a dielectric liquid along a surface, using electrodes that are embedded into the surface. In this study, two two-phase heat transport devices are created. The first device transports the heat in a linear direction. The second device transports the heat in a radial direction from a central heat source. The radial pumping configuration provides several advantages. Most notably, the heat source is wetted with fresh liquid from all directions, thereby reducing the amount of distance that must be travelled by the working fluid. The power required to operate the EHD conduction pumps is a trivial amount relative to the heat that is transported.


Sign in / Sign up

Export Citation Format

Share Document