Effect of Concentration and Loading Fluid of Nanofluids on the Thermal Resistance of Sintered Powder Wick Heat Pipe

2013 ◽  
Vol 651 ◽  
pp. 728-735 ◽  
Author(s):  
Nandy Putra ◽  
Wayan Nata Septiadi ◽  
Ridho Irwansyah

Heat pipes have been widely used as one of the alternative methods to absorb more heat in the cooling systems of electronic devices. One of the ways to improve the thermal performance of heat pipes is to change the fluid transport properties and flow features of working fluids using nanofluids. The purpose of this research was to investigate the effect of Al2O3-water nanofluids concentration and fluid loading to the thermal resistance between evaporator and adiabatic section of copper straight sintered copper powder wick heat pipe. In this research, sintered powder wick heat pipes were manufactured and tested to determine the thermal resistance of the sintered powder wick heat pipes which charged with water and Al2O3-water nanofluids. The concentrations of the nanoparticles were varied from 1 %, 3% and 5 % of the volume of the base fluid. The result shows that Al2O3-water nanofluids have the ability to reduce the temperature at the evaporator section and the thermal resistance of heat pipe. The increase in nanofluids concentration could give significant effect to reduce the thermal resistance of heat pipes. The amount of working fluid charged into the heat pipes also gives an effect in heat pipes thermal resistance, where the thermal resistance was lower when the heat pipe was charged with 60% of its volume. The formation of coating layer at sintered powder wick also can fixed the wick porosity and cause roughness on the surface of granular pore which the increased of capillary could give the effect for enhancement of heat pipe performance.

2011 ◽  
Vol 27 (2) ◽  
pp. 167-176 ◽  
Author(s):  
L.-H. Chien ◽  
Y.-C. Shih

ABSTRACTFlat heat pipes having mesh capillaries were investigated experimentally in this study. An apparatus was designed to test thermal performance of plate type copper water heat pipe having one or two layers of #50 or #80 mesh capillary structures with 5 to 50 W heat input. The working fluid, water, is charged in volumes equivalent to 25%, 33%, or 50% of the internal space. In addition to horizontal orientation, heat pipes were tested with the evaporator section elevated up to 40 degree inclination angle. Temperature distribution of the heat pipe was measured, and the evaporator, adiabatic and condensation resistances were calculated separately. The effects of mesh size, charge volume fraction, and inclination angle on thermal resistance were discussed. In general, the #80 mesh yielded lower thermal resistance than the #50 mesh. Inclination angle has a more significant effect on condenser than evaporator. Analysis of evaporation and condensation in flat heat pipes was conducted and semi-empirical correlations were derived. The present evaporation correlation predicts evaporation resistance between −20% and +30%, and the condensation correlation predicts most condensation resistance data within ±30% for 25% and 33% charge volume fraction.


Heat pipes are deliberated to be effective heat dissipation devices compared to other types of heat sinks due to their high effective thermal conductivity. Because of the flexibility in the design and layout of heat pipe turns along the heat source, pulsating heat pipes have gained popularity. One of the parameters that have the mainimpact on the presentation of CLPHP is the thermo physical properties of the working fluid. The properties of the working fluid affect the temperature difference between the evaporator and the condenser which in turn affect the thermal resistance of the CLPHP. In this connection, the influence of different working fluids is experimentally investigated on a two loop CLPHP, varying the evaporator heat flux. Pure fluids, viz., water, acetone, benzene and binary mixture, viz., Acetone-water and Benzene-water are utilized on working fluids. The heat input considered at the evaporator is 32W, 48W and 60W. The filling ratio is kept as 50 %. The results show that among the working fluids considered for the study, acetone exhibits least thermal resistance among the pure fluids at all heat fluxes considered in the analysis, while Acetone-water mixture has exhibited least thermal resistance among the water based mixtures.


2010 ◽  
Vol 31 (4) ◽  
pp. 125-132 ◽  
Author(s):  
Patrik Nemec ◽  
Alexander Čaja ◽  
Richard Lenhard

Visualization of heat transport in heat pipes using thermocamera Heat pipes, as passive elements show a high level of reliability when taking heat away and they can take away heat flows having a significantly higher density than systems with forced convection. A heat pipe is a hermetically closed duct, filled with working fluid. Transport of heat in heat pipes is procured by the change of state of the working fluid from liquid state to steam and vice versa and depends on the hydrodynamic and heat processes in the pipe. This study have been focused on observing the impact these processes have on the heat process, the transport of heat within the heat pipe with the help of thermovision. The experiment is oriented at scanning the changes in the surface temperatures of the basic structural types of capillary heat pipes in vertical position.


Author(s):  
Mahboobe Mahdavi ◽  
Saeed Tiari ◽  
Ajaysinh Solanki ◽  
Vivek Pawar

In the current study, the performance of a high temperature, cylindrical heat pipe under various operating conditions is investigated numerically. To find the appropriate geometrical and working parameters of the heat pipe, a two-dimensional axisymmetric model is developed to describe the vapor and liquid flows and heat transfers in the vapor core, the wick, and the wall regions. Sodium and stainless steel are selected as the working fluid, the wick material, and the container material. The compressibility of the vapor and viscous dissipation are taken into account. In the wick region, the Darcy–Brinkman–Forchheimer model is applied to simulate the liquid sodium characteristics. The effect of wick type, heat input, and operating temperature are studied on the overall performance of the heat pipe as well as vapor and liquid pressure drops. Screen wick, sintered powder wick and felt wick are selected. The results showed that, for the selected wick types, the sintered powder wick resulted in the largest liquid pressure drop and the felt wick resulted in the lowest thermal resistance. In addition, the influence of operating temperature on thermal resistance diminishes with increasing temperature.


2005 ◽  
Author(s):  
John D. Bernardin

Increases in the power density of electronics and the corresponding decreases in packaging space have driven the development and enhancement of numerous electronics cooling strategies. The design of cooling systems for electronics are particularly challenging in spacecraft environments where there exists the additional requirements of minimal mass and volume, high reliability, reduced complexity and number of moving parts, and ability to operate in a reduced or gravity-free environment. One cooling technique that has proven to satisfy these demanding and integrated requirements for spacecraft electronics cooling applications, involves the use of heat pipes. The heat pipe is a passive heat transport device that requires no moving parts, is highly compact and reliable, and is an efficient mover of thermal energy in reduced gravity environments. Despite all of these positive features, heat pipes do have limitations and functional characteristics that designers must be keenly aware of when incorporating them into the development of electronic cooling systems. These include, in part, limits on the heat transport capacity and operational temperature, as well as performance variations between seemingly identical heat pipes due to contamination or manufacturing flaws. This paper discusses thermal analyses and performance testing of commercial copper heat pipes that utilize a sintered copper wick with either methanol or water as the working fluid. First, the electronic cooling application, thermal operating requirements, and commercial heat pipe designs are introduced. Next, the models and analyses used to predict the heat transport limits for the heat pipes are discussed. Following this, the experimental apparatus and procedures used to characterize the thermal performance of the heat pipes are presented. Finally, with the aid of empirical data, assessments of the thermal performance of each heat pipe, the range of performance variation between heat pipes, as well as the applicability and accuracy of the analytical performance models are provided.


Author(s):  
Sukhvinder Kang ◽  
Randy Cook ◽  
Dave Gailus

In recent years heat pipes have become widely use in high performance air-cooled heat sinks for cooling electronics equipment. Such heat sinks rely on the heat pipes to collect heat from small high heat flux sources, transport it over some distance, and spread the heat efficiently to a volume of fins where the heat is transferred to an air flow stream by convection. When used effectively, heat pipes enable heat sinks that have low thermal resistance and low mass. For the heat sink to be successful, the heat pipes must also have sufficient heat transport capacity. To deliver their design thermal resistance and heat transport capacity, heat pipes need to be manufactured with well-controlled wick characteristics, working fluid fill volume and minimal residual non-condensable gases. It is standard procedure for heat pipe manufacturing companies to test 100 percent of the heat pipes they manufacture. The most commonly used production test is designed to rapidly show whether or not a heat pipe functions as a heat pipe. On a sampling basis, manufacturers also test the heat transport capacity of their heat pipes. There is no rapid test that can verify that any specific heat pipe will achieve the desired operational life — this is achieved by validation of the manufacturing process and adequate manufacturing process controls. In this paper we describe a test method and apparatus that can be used to rapidly test whether a heat pipe has the required thermal resistance at the specified heat transport capacity. The apparatus is capable of testing heat pipes over a wide range of diameters and lengths in their end use configuration (with bends and flattened regions). The key design criteria for the test apparatus is described and test data for several application specific heat pipes is presented.


Author(s):  
Tarigonda Hari Prasad ◽  
Pol Reddy Kukutla ◽  
P. Mallikarjuna Rao ◽  
R. Meenakshi Reddy

Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in the form of liquid–vapor system, i.e., receiving heat from one end and transferring it to other end by a pulsating action of the liquid–vapor system. Pulsating heat pipes have more advantages than other heat pipes. The problem identified is, to calculate the performance of the pulsating heat pipes with respect to different inclinations using various parameters. In this paper, experiment on performance of closed single loop pulsating heat pipe (CLPHP) using water as a working fluid is considered. The parameters such as thermal resistance (Rth), heat transfer coefficient (h), and variation of temperature with respect to time for the given input at different inclinations such as 0°, 45°, and 90° are taken for the present work. Water is used as the working fluid and is subjected to 50% filling ratio and vacuumed at a pressure of 2300Pa. The performance is calculated at different inclinations of the CLPHP with single turn/loop. The factors such as heat transfer coefficient, thermal resistance, time taken for heating the pulsating heat pipe with the given input are calculated. Finally, it has been concluded that is preferable orientation for PHP and it was found be at vertical orientation i.e., at 90° inclination, because more pulsating action is taken place at this inclination and henceforth, heat transfer rate is faster at this inclination.


2020 ◽  
Vol 38 (1A) ◽  
pp. 88-104
Author(s):  
Anwar S. Barrak ◽  
Ahmed A. M. Saleh ◽  
Zainab H. Naji

This study is investigated the thermal performance of seven turns of the oscillating heat pipe (OHP) by an experimental investigation and CFD simulation. The OHP is designed and made from a copper tube with an inner diameter 3.5 mm and thickness 0.6 mm and the condenser, evaporator, and adiabatic lengths are 300, 300, and 210 mm respectively.  Water is used as a working fluid with a filling ratio of 50% of the total volume. The evaporator part is heated by hot air (35, 40, 45, and 50) oC with various face velocity (0.5, 1, and 1.5) m/s. The condenser section is cold by air at temperature 15 oC. The CFD simulation is done by using the volume of fluid (VOF) method to model two-phase flow by conjugating a user-defined function code (UDF) to the FLUENT code. Results showed that the maximum heat input is 107.75 W while the minimum heat is 13.75 W at air inlet temperature 35 oC with air velocity 0.5m/s. The thermal resistance decreased with increasing of heat input. The results were recorded minimum thermal resistance 0.2312 oC/W at 107.75 W and maximum thermal resistance 1.036 oC/W at 13.75W. In addition, the effective thermal conductivity increased due to increasing heat input.  The numerical results showed a good agreement with experimental results with a maximum deviation of 15%.


Author(s):  
Seyyed Khandani ◽  
Himanshu Pokharna ◽  
Sridhar Machiroutu ◽  
Eric DiStefano

Remote heat pipe based heat exchanger cooling systems are becoming increasingly popular in cooling of notebook computers. In such cooling systems, one or more heat pipes transfer the heat from the more populated area to a location with sufficient space allowing the use of a heat exchanger for removal of the heat from the system. In analsysis of such systems, the temperature drop in the condenser section of the heat pipe is assumed negligible due to the nature of the condensation process. However, in testing of various systems, non linear longitudinal temperature drops in the heat pipe in the range of 2 to 15 °C, for different processor power and heat exchanger airflow, have been measured. Such temperature drops could cause higher condenser thermal resistance and result in lower overall heat exchanger performance. In fact the application of the conventional method of estimating the thermal performance, which does not consider such a nonlinear temperature variations, results in inaccurate design of the cooling system and requires unnecessarily higher safety factors to compensate for this inaccuracy. To address the problem, this paper offers a new analytical approach for modeling the heat pipe based heat exchanger performance under various operating conditions. The method can be used with any arbitrary condenser temperature variations. The results of the model show significant increase in heat exchanger thermal resistance when considering a non linear condenser temperature drop. The experimental data also verifies the result of the model with sufficient accuracy and therefore validates the application of this model in estimating the performance of these systems.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012088
Author(s):  
A. A. Litvintceva ◽  
N. I. Volkov ◽  
N. I. Vorogushina ◽  
V. A. Moskovskikh ◽  
V. V. Cheverda

Abstract Heat pipes are a good solution for temperature stabilization, for example, of microelectronics, because these kinds of systems are without any moving parts. Experimental research of the effect of operating parameters on the heat transfer in a cylindrical heat pipe has been conducted. The effect of the working fluid properties and the porous layer thickness on the heat flux and temperature difference in the heat pipe has been investigated. The temperature field of the heat pipe has been investigated using the IR-camera and K-type thermocouples. The data obtained by IR-camera and K-type thermocouples have been compared. It is demonstrated the power transferred from the evaporator to the condenser is a linear function of the temperature difference between them.


Sign in / Sign up

Export Citation Format

Share Document