scholarly journals CFD simulation of DEBORA boiling experiments

2012 ◽  
Vol 33 (1) ◽  
pp. 107-122
Author(s):  
Roland Rzehak ◽  
Eckhard Krepper

CFD simulation of DEBORA boiling experimentsIn this work we investigate the present capabilities of computational fluid dynamics for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. This kind of modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant non-dimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12) as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, bubble size and liquid temperature as well as axial profiles of wall temperature. After reviewing the theoretical and experimental basis of correlations used in the ANSYS CFX model used for the calculations, we give a careful assessment of the necessary recalibrations to describe the DEBORA tests. The basic CFX model is validated by a detailed comparison to the experimental data for two selected test cases. Simulations with a single set of calibrated parameters are found to give reasonable quantitative agreement with the data for several tests within a certain range of conditions and reproduce the observed tendencies correctly. Several model refinements are then presented each of which is designed to improve one of the remaining deviations between simulation and measurements. Specifically we consider a homogeneous MUSIG model for the bubble size, modified bubble forces, a wall function for turbulent boiling flow and a partial slip boundary condition for the liquid phase. Finally, needs for further model developments are identified and promising directions discussed.

2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Roland Rzehak ◽  
Eckhard Krepper

We investigate the present capabilities of CFD for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. Very similar modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant nondimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12) as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, liquid temperature, and bubble size. Robust predictive capabilities of the modeling require that it is validated for a wide range of parameters. It is known that a careful calibration of correlations used in the wall boiling model is necessary to obtain agreement with the measured data. We here consider tests under a variety of conditions concerning liquid subcooling, flow rate, and heat flux. It is investigated to which extent a set of calibrated model parameters suffices to cover at least a certain parameter range.


2018 ◽  
Vol 19 (2) ◽  
pp. 208
Author(s):  
Xudong Zheng ◽  
Fangwei Xie ◽  
Diancheng Wu ◽  
Xinjian Guo ◽  
Bing Zhang ◽  
...  

The purpose of this paper is to study the air effects on transmission characteristics of hydro-viscous clutch and reveal the distribution law of the flow field of the oil film. The computational-fluid-dynamics (CFD) simulation model of oil film with radial oil grooves between friction pairs is taken as the study object. Considering the air effects, the pressure field, two-phase distribution, transmission torque and temperature field of the oil film are analyzed comparatively by using the CFD technology. The results show that the presence of air changes the pressure and temperature distributions of the oil film. With increase of the absolute rotational speed, the air volume fraction increases and the radius value of the air-liquid boundary decreases under condition of constant speed difference, which makes the coverage rate of the oil film on the surface of the friction disks reduce and the transmission torque of the oil film decrease. These simulation results are attributed to the study of hydro-viscous-drive and its applications. This paper also can provide a theoretical basis for the mechanism of power transmission through oil film in the presence of air effects.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Ouajih Hamouda ◽  
David S. Weaver ◽  
Jovica Riznic

This paper presents the results of an experimental model study of the transient loading of steam generator tubes during a postulated main steam line break (MSLB) accident in a nuclear power plant. The problem involves complex transient two-phase flow dynamics and fluid-structural loading processes. A better understanding of this phenomenon will permit the development of improved design tools to ensure steam generator tube integrity. The pressure and temperature were measured upstream and downstream of a sectional model of a tube bundle in cross-flow, and the transient tube loads were directly measured using dynamic piezoelectric load cells. High-speed videos were taken to observe and better understand the flow phenomena causing the tube loading. The working fluid was R-134a and the tube bundle was a normal triangular array with a pitch ratio of 1.36. The flow through the bundle was choked for the majority of the transient. The transient tube loading is explained in terms of the associated fluid mechanics. An empirical model is developed that enables the prediction of the maximum tube loads once the pressure drop is known.


Author(s):  
Wonju Lee ◽  
Nahmkeon Hur

Hydraulic retarders are used as auxiliary brake system in heavy vehicles and high speed trains. A hydraulic retarder is composed of two parts, a rotor and a stator. When the system is activated, the working fluid is injected into the wheel and circulates between the rotor and stator vanes using the resisting torque of the stator to slow down the vehicle. The purpose of this research is to investigate a water retarder system and the details of flow characteristics of the water, and to investigate the device performance as well. The water retarder is basically composed of a rotor and a stator. In the present research, the rotor rotating speed is fixed at 2000 rpm. Since the performance characteristic of the water retarder is dependent upon the water volume ratio, different volume ratios have been investigated. In this paper water retarder simulations are carried out using CFD using sliding mesh technique. To capture the unsteady effects, the cases have been solved as transient simulations using standard k-ε turbulence model. The simulations have been solved as two phase flow, water and air. The results are compared for different water volume ratios. The result show that the air particles are accumulated in the center of the wheels forming a tube shape (doughnut shape) and water particles are at the outside, wrapping the air particles. In addition, torque values are sensitively dependent upon water volume fraction.


2016 ◽  
Vol 16 (6) ◽  
pp. 1700-1709 ◽  
Author(s):  
Yazan Taamneh

Computational fluid dynamics (CFD) simulations were performed for experiments carried out with two identical pyramid-shaped solar stills. One was filled with Jordanian zeolite-seawater and the second was filled with seawater only. This work is focused on CFD analysis validation with experimental data conducted using a model of phase change interaction (evaporation-condensation model) inside the solar still. A volume-of-fluid (VOF) model was used to simulate the inter phase change through evaporation-condensation between zeolite-water and water vapor inside the two solar stills. The effect of the volume fraction of the zeolite particles (0 ≤ ϕ ≤ 0.05) on the heat and distillate yield inside the solar still was investigated. Based on the CFD simulation results, the hourly quantity of freshwater showed a good agreement with the corresponding experimental data. The present study has established the utility of using the VOF two phase flow model to provide a reasonable solution to the complicated inter phase mass transfer in a solar still.


Author(s):  
Alexandre Zanchetti ◽  
Mickael Hassanaly ◽  
Hervé Cordier ◽  
Antonio Sanna ◽  
Namane Mechitoua ◽  
...  

The Fukushima accident reminded us of the possible consequences in terms of radiological release that can result from a hydrogen explosion in a nuclear power plant, and, specifically, within the containment of a water cooled reactor building. Some mitigation means against hydrogen hazards exist but performance improvements in numerical tools simulating thermal-hydraulic flows and hydrogen combustion are necessary to allow realistic assessments of severe accident consequences in the containment. In this context, EDF works on CFD simulation of hydrogen distribution in penalized conditions. After dealing with cases for which the water spray system was assumed to be unavailable, and so treated with single-phase CFD code [1] [2], the present paper content is now about simulation and analysis of the local hydrogen concentration in the case of a severe accident for which the water spray system is available. Numerical developments of a multi-phase CFD code (Neptune_CFD) and code validation lead to consistent simulations. The numerical simulation performed by EDF confirms the favorable safety impact of water spray on pressure and temperature for a LOCA scenario occurring on a 1300 MWe Pressurized Water Reactor. Nevertheless, CFD results show that the activation of the spray system before hydrogen injection gives greater hydrogen concentration. So, in the future, to better assess hydrogen risk, EDF will perform computations at CFD taking into account the interaction between combustion and water sprays.


1994 ◽  
Vol 267 ◽  
pp. 185-219 ◽  
Author(s):  
D. Z. Zhang ◽  
A. Prosperetti

Averaged equations governing the motion of equal rigid spheres suspended in a potential flow are derived from the equation for the probability distribution. A distinctive feature of this work is the derivation of the disperse-phase momentum equation by averaging the particle equation of motion directly, rather than the microscopic equation for the particle material. This approach is more flexible than the usual one and leads to a simpler and more fundamental description of the particle phase. The model is closed in a systematic way (i.e. with no ad hoc assumptions) in the dilute limit and in the linear limit. One of the closure quantities is related to the difference between the gradient of the average pressure and the average pressure gradient, a well-known problem in the widely used two-fluid engineering models. The present result for this quantity leads to the introduction of a modified added mass coefficient (related to Wallis's ‘exertia’) that remains very nearly constant with changes in the volume fraction and densities of the phases. Statistics of this coefficient are provided and exhibit a rather strong variability of up to 20% among different numerical simulations. A detailed comparison of the present results with those of other investigators is given in § 10.As a further illustration of the flexibility of the techniques developed in the paper, in Appendix C they are applied to the calculation of the so-called ‘particle stress’ tensor. This derivation is considerably simpler than others available in the literature.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4448
Author(s):  
Woo-Shik Kim ◽  
Jae-Bong Lee ◽  
Ki-Hwan Kim

Pressure drop across the moisture separator installed in the steam generator of a nuclear power plant affects the power generation efficiency, and so accurate pressure drop prediction is important in generator design. In this study, an empirical correlation is proposed for predicting the two-phase pressure drop through a moisture separator. To ensure the applicability of the correlation, a series of two-phase air-water experiments were performed, and the results of the present test and of the benchmark test of high-pressure steam-water were used in developing the correlation. Based on the experimental results, quality, dimensionless superficial velocity, density ratio of the working fluid, and the geometrical factor were considered to be important parameters. The two-phase pressure drop multiplier was expressed in terms of these parameters. The empirical correlation was found to predict the experimental results within a reasonable range.


1971 ◽  
Vol 93 (1) ◽  
pp. 70-80 ◽  
Author(s):  
John R. Hoffmann ◽  
Ernest G. Feher

This paper explores the potential applicability of the Supercritical (Feher) Thermodynamic Power Cycle to advanced ground nuclear power systems. The supercritical cycle is a closed cycle heat engine that operates entirely above the critical pressure of the working fluid. It is characterized by high thermal efficiency and compactness of the machinery. The cycle is highly regenerated and receives heat over a narrow temperature range. For the evaluation of the advantages of the power conversion concept, a 150-kwe power conversion module has been selected that employs a gas turbine driven high speed alternator, using carbon dioxide as the working fluid.


Author(s):  
Haden Hinkle ◽  
Deify Law

Two-phase (non-boiling) flows have been shown to increase heat transfer in channel flows as compared with single-phase flows. The present work explores the effects of gas phase distribution such as volume fraction and bubble size on the heat transfer in upward vertical channel flows. A two-dimensional (2D) channel flow of 10 cm wide by 100 cm high is studied numerically. Numerical simulations are performed using the commercial computational fluid dynamics (CFD) code ANSYS FLUENT. The bubble size is characterized by the Eötvös number. The volume fraction and the Eötvö number are varied parametrically to investigate their effects on Nusselt number of the two-phase flows. All simulations are compared with a single-phase flow condition.


Sign in / Sign up

Export Citation Format

Share Document