scholarly journals Impact of soil compaction on root development and yield of meadow-grass

2013 ◽  
Vol 27 (1) ◽  
pp. 7-13 ◽  
Author(s):  
T. Głąb

Abstract The field experiment was carried out on a smoothstalked meadow-grass to analyse the effect of tractor traffic on herbage production and root morphology. The multiple passes of tractor changed physical properties of soil. Increase in bulk density and penetration resistance of soil under smooth-stalked meadow-grass was recorded up to the depth of 30 cm. The tractor traffic resulted in changes in smooth-stalked meadow-grass yields. During the second and the third harvest it was found that wheel traffic decreased plant yields. For the first harvest the opposite effect in herbage production was noticed. The tractor traffic significantly changed the root morphometric properties in the upper, 0-5 cm, soil layer. Intensive tractor traffic (four and six passes) significantly increased the root length in diameter range of 0.1-0.5 mm. There were no differences in both mean root diameter and specific root length what indicated that traffic treatment applied did not change the root diameter. The results indicate that smooth-stalked meadow-grass could be recommended for compacted soils when intensive traffic is present.

2017 ◽  
Vol 27 (3) ◽  
pp. 319-324 ◽  
Author(s):  
David H. Suchoff ◽  
Christopher C. Gunter ◽  
Frank J. Louws

At its most basic, grafting is the replacement of one root system with another containing more desirable traits. Grafting of tomato (Solanum lycopersicum) onto disease-resistant rootstocks is an increasingly popular alternative for managing economically damaging soilborne diseases. Although certain rootstocks have demonstrated ancillary benefits in the form of improved tolerance to edaphic abiotic stress, the mechanisms behind the enhanced stress tolerance are not well understood. Specific traits within root system morphology (RSM), in both field crops and vegetables, can improve growth in conditions under abiotic stress. A greenhouse study was conducted to compare the RSM of 17 commercially available tomato rootstocks and one commercial field cultivar (Florida-47). Plants were grown in containers filled with a mixture of clay-based soil conditioner and pool filter sand (2:1 v/v) and harvested at 2, 3, or 4 weeks after emergence. At harvest, roots were cleaned, scanned, and analyzed with an image analysis system. Data collected included total root length (TRL), average root diameter, specific root length (SRL), and relative diameter class. The main effect of cultivar was significant (P ≤ 0.05) for all response variables and the main effect of harvest date was only significant (P ≤ 0.01) for TRL. ‘RST-106’ rootstock had the longest TRL, whereas ‘Beaufort’ had the shortest. ‘BHN-1088’ had the thickest average root diameter, which was 32% thicker than the thinnest, observed in ‘Beaufort’. SRL in ‘Beaufort’ was 60% larger than ‘BHN-1088’. This study demonstrated that gross differences exist in RSM of tomato rootstocks and that, when grown in a solid porous medium, these differences can be determined using an image analysis system.


1998 ◽  
Vol 63 ◽  
Author(s):  
L. Vande Walle ◽  
S. Willems ◽  
R. Lemeur

Root  length and root mass were studied in two different forest stands: an  oak-beech and an ash stand, both in the 'Aelmoeseneie' experimental forest at Gontrode, Belgium. In the oak-beech    stand, the length of the finest roots < 1 mm) was significantly higher  than the length of the other    diameter classes (1-2 and 2-5 mm) in the upper 60 cm of the mineral soil.  Because of large    variances, this significance could not be found in the ash forest. In this  ash forest type, the length    of the finest roots in the upper mineral soil layer (0-15 cm) was higher  than all the other lengths,    both considering the vertical root length distribution within the ash plot,  and comparing the ash plot    to the oak-beech stand. For the root mass, only the amount of roots with a  diameter between 2    and 5 mm in the upper mineral soil layer of the ash plot was significantly  higher than the others.    SpecifiC root length (m root/g D.M.) is calculated for both the oak-beech  and the ash plot. These    values can be used to convert biomass data into root length data, which  gives a better indication of    the water uptake capacity of the forest stand.


2018 ◽  
Vol 10 ◽  
pp. 01019
Author(s):  
Andrzej Żabiński ◽  
Urszula Sadowska

The objective of the study was determination of the variability of morphometry and comparison of the morphological structure of the root system in winter cultivars of spelt. Four spelt cultivars were used in the study: Frankencorn, Oberkulmer Rotkorn, Schwabenkorn and Ostro. The material for the study originated from a field experiment. The roots were collected using the soil core method to the depth of 30 cm, from the rows and inter-rows, then the roots were separated using a semi-automatic hydropneumatic scrubber. The cleaned roots were manually separated and scanned, obtaining their digital images. Image analysis was performed using the Aphelion computer software. In order to characterize the root system of the spelt cultivars included in the study, values of the following indexes were determined: root dry mass (RDM), root length density (RLD), specific root length (SRL), mean root diameter (MD). Based on the obtained results it was determined that the RDM, MD and RLD indexes in all spelt cultivars attain the highest values in the row, at the depth 0–5 cm.The highest value of the RDM and MD indexes characterized the root system of the Ostro cultivar at the depth 0–5 cm. The Oberkulmerrotkorn spelt cultivar was distinguished among the tested objects by the highest value of the SRL index.


2018 ◽  
Vol 48 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Doglas Bassegio ◽  
Marcos Vinicius Mansano Sarto ◽  
Ciro Antonio Rosolem ◽  
Jaqueline Rocha Wobeto Sarto

ABSTRACT Guar (Cyamopsis tetragonoloba L.) is commonly grown in arid lands, because of its high drought-tolerance. However, soil compaction may be a limiting factor to its growth. This study aimed to evaluate the guar growth, according to the soil penetration resistance (0.20 MPa, 0.33 MPa, 0.50 MPa, 0.93 MPa and 1.77 MPa, in a layer with depth between 0.15 m and 0.20 m), in a Rhodic Acrudox soil. The shoot and root dry mass, root length by the Q1/2 index (mechanical soil penetration resistance in which the root growth is reduced by 50 %) and root diameter were evaluated. The impairment of the guar shoot growth begins when the penetration resistance is greater than around 1 MPa. The soil compaction alters the distribution of guar roots in the soil profile, concentrating them in the 0.15 m layer, but it does not prevent roots from penetrating this layer and developing in depth. The root diameter increases in the compacted layer. A soil penetration resistance of up to 1.77 MPa does not influence the root length density below the compacted layer, as well as the total root length density of guar. Although the guar Q1/2 index is greater than 1.58, the shoot and root dry mass are impaired.


Botany ◽  
2011 ◽  
Vol 89 (6) ◽  
pp. 397-403 ◽  
Author(s):  
Li Fan ◽  
Yolande Dalpé ◽  
Chengquan Fang ◽  
Claudine Dubé ◽  
Shahrokh Khanizadeh

To investigate the influence of arbuscular mycorrhizal fungi (AMF) on biomass and root morphology, a greenhouse experiment was conducted using three elite strawberry ( Fragaria  × ananassa Duch.) cultivars (‘Kent’, ‘Jewel’, and ‘Saint-Pierre’). They were subjected to three NaCl levels (0, 30, and 60 mmol/L) and were inoculated and noninoculated (control) with AMF Glomus irregulare . The presence of AMF significantly changed root morphology and increased root-length percentages of medium (0.5 mm < root diameter φ ≤ 1.5 mm) and coarse (φ > 1.5 mm) roots, shoot and root tissue biomass, root to shoot ratio (R/S ratio), and specific root length (SRL), regardless of cultivar and salinity. In contrast, salt alone changed root morphology and decreased shoot and root tissue biomass, R/S ratio, and SRL. The AMF colonization rates were reduced linearly and significantly with increasing salinity levels. Cultivars responded differently to AMF than to salt stress. ‘Saint-Pierre’ seemed to be the most tolerant cultivar to salinity, while ‘Kent’ was the most sensitive. Consequently, AMF symbiosis highly enhanced salt tolerance of strawberry plants, which confirmed the potential use of mycorrhizal biotechnology in sustainable horticulture in arid areas.


2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Al-Yesari & Al–Mosawy

This experiment was conducted to study the role of potassium and calcium mixture to mitigate  salt stress of some genotypes of wheat to improve growth and yield of wheat the enzymatic situation and root architecture, this experiment included three factors the first factor was three levels of potassium and calcium K50+Ca100, K100+Ca200 and K200+Ca400 µM.L-1, and the second factor was three levels of salinity 0NaCl and 20 NaCl and 40µM.L-1NaCl, and the third factor was four varieties of wheat namely: with three replications.The result can be summarized as follow: Abu Ghraib3 variety was superior in diameter of root and the activity of some antioxidant enzymes SOD in shoot. Ibaa 99 variety was superior in root weight and root length and the activity of some antioxidant enzymesPOD,CAT, proline concentration, Jandola variety was superior root weight and root length and the activity of some antioxidant enzymes SOD, SinAl-Fil was superior in the activity of some antioxidant enzymes POD, CAT and proline concentration. K50+Ca100 treatment was superior in the activity antioxidant enzymes POD, CAT, SOD, proline concentration. While K100+Ca200 treatment was superior in root length, K200+Ca400 treatment was superior in root diameter and root weight. 40NaCl treatment was superior in the activity of antioxidant enzymes POD,CAT,SOD, proline concentration. 0NaCl treatment was superior in root diameter and root weight. and found that the addition of calcium and potassium to the nutrient solution worked to reduce stress resulting from the salt added sodium chloride were inferred through the results obtained.


2021 ◽  
Vol 67 (No. 9) ◽  
pp. 541-547
Author(s):  
Guanghua Jing ◽  
Zhikun Chen ◽  
Qiangqiang Lu ◽  
Liyan He ◽  
Ning Zhao ◽  
...  

Fine root traits are plastic and responsive to increased nitrogen (N) deposition. However, with the restoring of the ecosystem after grain for green, little research has been reported about the response of root traits in a long-term restored ecosystem to increased N deposition. Therefore, a successive N addition experiment was conducted in a long-term restored grassland on the Loess Plateau to analyse the effects of different N addition levels (0, 2.5, 5, 10, 20 g N/m<sup>2</sup>/year) on root morphological traits, soil carbon (C) and N. Our results showed that root morphological traits (except for root diameter) firstly increased and then declined, with the maximum in the N level of 5 g/m<sup>2</sup>/year. N addition significantly increased soil organic carbon, total nitrogen, ammonium nitrogen (NH<sub>4</sub><sup>+</sup>-N) and nitrate-nitrogen (NO<sub>3</sub><sup>–</sup>-N) with the increasing N addition level, especially in the soil surface layer. Specific root length and specific root area had remarkable negative correlations with NO<sub>3</sub><sup>–</sup>-N, while root diameter and root length density had positive correlations with soil availability N and soil microbial biomass carbon. This study indicated that plants could have the threshold response to adapt to the N addition and prefer to slowly grow rather than quickly invest and return in order to adapt to the environmental stress.  


Irriga ◽  
2007 ◽  
Vol 12 (1) ◽  
pp. 14-26 ◽  
Author(s):  
Charles Duruoha ◽  
Cassio Roberto Piffer ◽  
Paulo Arbex Silva

CORN ROOT LENGTH DENSITY AND ROOT DIAMETER AS AFFECTED BY SOIL COMPACTION AND SOIL WATER CONTENT  Charles Duruoha1; Cassio Roberto Piffer2; Paulo Arbex Silva2(1) United States Department of Agriculture (USDA-ARS), National Soil Dynamics Laboratory, Auburn, AL - U.S.A, [email protected] (2) Universidade Estadual Paulista, Faculdade de Ciências Agronômicas, Departamento de Engenharia Rural, Botucatu, SP  1 ABSTRACT Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm-3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 x 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm-3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm-3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm-3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities. KEYWORDS: Soil compaction, water, bulk density, soil strength, root growth.  DURUOHA, C.; PIFFER, C. R.; SILVA, P. A. COMPRIMENTO E DIÂMETRO RADICULAR DO MILHO, EM FUNÇÃO DA COMPACTAÇÃO E DO TEOR DE ÁGUA NO SOLO     2 RESUMO Os efeitos negativos da compactação do solo vêm sendo reconhecidos como um dos problemas que restringe o sistema radicular e conseqüentemente, impede a produção agrícola, especialmente no sudoeste dos Estados Unidos. Simulações de camadas de restrição de raízes, em casa de vegetação, são necessárias para desenvolver mecanismos que reduzam problemas de compactação dos solos. A seleção de três diferentes densidades de solo, baseadas no ensaio de Proctor é também um fator importante para determinar qual densidade restringe a penetração da raiz. O experimento foi conduzido para avaliar o comprimento e diâmetro radicular da cultura do milho (Zea mays L.), em função da densidade do solo e do estresse hídrico, caracterizado pelas densidades (1,2; 1,4 e 1,6 cm-3) e dois níveis de teor de água (70 e 90 % da capacidade de campo). O método estatístico utilizado foi inteiramente casualizado, com quatro repetições, em arranjo fatorial (3 x 2). Os vasos foram montados em tubos de PVC, com diâmetro interno de 20 cm, sobrepostos, totalizando 40 cm de altura (anel superior com 20 cm e anéis compactado e inferior com 10 cm), a camada com diferentes níveis de solo compactado foi instalada entre 20 e 30 cm de profundidade nos vasos. Os resultados indicaram, através da resistência mecânica que na camada superior as raízes conseguiram penetrar até onde havia condições favoráveis do solo, antes que o sistema radicular fosse afetado de 3,16; 2,41 e 1,37 cm cm-3 (P<0.005). Ocorreu diferença significativa na camada compactada para os dois níveis de teor de água, sendo que a 90 % da capacidade de campo houve uma redução do crescimento radicular de 0,91 para 0,60 cm cm-3 (P<0,005). O comprimento e o diâmetro radicular foram afetados pelo aumento da densidade do solo de 1,2 a 1,6 g cm-3, com resistência à penetração de 1.4 MPa. O teor de água de 70 % da capacidade de campo proporcionou maior comprimento radicular em todas as densidades estudadas.  O aumento no comprimento radicular resultou em maior volume radicular. Concluiu-se também que os efeitos da compactação do solo prejudicaram o diâmetro radicular, principalmente na camada compactada. A temperatura do solo afetou o crescimento radicular, principalmente nas camadas com densidade elevada. UNITERMOS: compactação do solo, teor de água, densidade do solo, resistência à penetração, crescimento radicular.


2005 ◽  
Vol 35 (7) ◽  
pp. 1708-1713 ◽  
Author(s):  
Pierre Y Bernier ◽  
Gilles Robitaille ◽  
Danny Rioux

Allocation of carbon for the production of fine roots is a significant component of the carbon budget within trees. Transformation of fine-root volumes or lengths as seen with minirhizotrons into fine-root mass per unit of horizontal area requires an estimate of the mass density or specific root length of fine roots for the species of interest. We obtained values of mass density of fine roots using three different sampling strategies on temperate and boreal forested sites. The strategies examined were (1) the use of bulk root samples from soil cores, (2) the use of individual roots from seedlings, and (3) the use of individual roots from soil cores. Our results show that the mass density of fine roots taken from seedlings is strongly dependent on root diameter, as shown by the strong drop in mass density with a decrease in diameter in all species examined. However, the dependency of mass density of individual fine roots extracted from soil cores on root diameter varies with the species mixture. Examination of thin cross-sections of roots using microscopy reveals that the proportion of xylem cell walls as a percentage of total cell walls also decreases strongly as root diameter diminishes for seedling fine roots, but that this relationship is not as clear in fine roots obtained from soil cores. We conclude that using the mass density from core fine roots may yield the best estimate of fine-root productivity when deriving such a value from the analysis of minirhizotron images. We also discuss some of the problems associated with the use of specific root length.


Sign in / Sign up

Export Citation Format

Share Document