scholarly journals Root length and distribution in the mineral soil of a mixed deciduous forest (experimental forest Aelmoeseneie)

1998 ◽  
Vol 63 ◽  
Author(s):  
L. Vande Walle ◽  
S. Willems ◽  
R. Lemeur

Root  length and root mass were studied in two different forest stands: an  oak-beech and an ash stand, both in the 'Aelmoeseneie' experimental forest at Gontrode, Belgium. In the oak-beech    stand, the length of the finest roots < 1 mm) was significantly higher  than the length of the other    diameter classes (1-2 and 2-5 mm) in the upper 60 cm of the mineral soil.  Because of large    variances, this significance could not be found in the ash forest. In this  ash forest type, the length    of the finest roots in the upper mineral soil layer (0-15 cm) was higher  than all the other lengths,    both considering the vertical root length distribution within the ash plot,  and comparing the ash plot    to the oak-beech stand. For the root mass, only the amount of roots with a  diameter between 2    and 5 mm in the upper mineral soil layer of the ash plot was significantly  higher than the others.    SpecifiC root length (m root/g D.M.) is calculated for both the oak-beech  and the ash plot. These    values can be used to convert biomass data into root length data, which  gives a better indication of    the water uptake capacity of the forest stand.

2006 ◽  
Vol 46 (3) ◽  
pp. 337 ◽  
Author(s):  
G. M. Lodge ◽  
S. R. Murphy

Studies were undertaken on native and sown perennial grass-based pastures as part of the Sustainable Grazing Systems National Experiment to estimate root depth and describe root distribution in these pastures. Samples from soil cores (0–210 cm maximum sampling depth) taken in 1997 (before grazing treatments were imposed) and 4 years later in spring 2001 were used to examine the effects of different grazing regimes on root length density (cm/cm3), root mass density (mg/cm3), root volume density (cm3/cm3), and diameter (mm) at each of 3 sites. In spring 1997, mean maximum root depth was 107 cm for a native perennial grass pasture near Barraba and 74 cm for a pasture sown with phalaris (Phalaris aquatica) and subterranean clover (Trifolium subterraneum) near Nundle, with values being lower for a native pasture near Manilla (65 cm for a Brown Vertosol and 97 cm for a Red Chromosol). For all pasture types, >20% of root mass density, root length density or root volume density was in the 0–5 cm soil layer and >60% was at a depth of 0–30 cm. At all sites, mean total root mass was around 1000 kg DM/ha. After 4 years of grazing (spring 2001) there were relatively few significant effects of grazing treatment on root length density, root mass density, root volume density, or root diameter. Effects that were significant mostly occurred at 0–5 cm for the native pastures and 0–50 cm for the sown pasture. For the Barraba native pasture, root length, volume and mass densities (0–5 cm) were higher (P<0.05) in the continuously grazed, low stocking rate treatment compared with all other treatments. Similarly, for the Manilla native pasture, root length density was higher (P<0.05) in this treatment at soil depths of 0–5 and >5–10 cm compared with all other treatments. In contrast, for the Nundle sown pasture, root length density (0–5 cm) was lowest (P<0.05) in 2 continuously grazed treatments compared with those that were strategically grazed in autumn and spring.


2009 ◽  
Vol 55 (No. 11) ◽  
pp. 502-510 ◽  
Author(s):  
P. Jaloviar ◽  
L. Bakošová ◽  
S. Kucbel ◽  
J. Vencurik

The fine root biomass represents 3,372 kg/ha in the intermediate stage of the beech virgin forest with different admixture of goat willow, where the vast majority of this biomass is located in the uppermost mineral soil layer 0–10 cm. The variability of the fine root biomass calculated from 35 sample points represents approximately 90% of the mean value and reaches the highest value within the humus layer. The total fine root length investigated in 10 cm thick soil layers decreases with increasing soil depth. A significant linear relationship between the fine root length (calculated per 1 cm thick soil layer and 1 m<sup>2</sup> of stand area) and the soil depth was confirmed, although the correlation is rather weak. The number of root tips decreases with increasing soil depth faster than the root length. As the number of tips per 1 cm of root length remains in the finest diameter class without significant changes, the reason is above all a decreased proportion of the finest root class (diameter up to 0.5 mm) from the total fine root length within the particular soil layer.


2005 ◽  
Vol 35 (11) ◽  
pp. 2756-2764 ◽  
Author(s):  
Werner Borken ◽  
Fritz Beese

Soil respiration was measured in adjacent pure and mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) at Solling, Germany. Forest type had a significant effect on soil respiration, which was highest in the pure beech stand and lowest in the pure spruce stand. Both throughfall and soil temperature increased with the proportion of beech. Additionally, microbial respiration and biomass in the organic (O) horizons increased sequentially from the pure spruce to the pure beech stand, suggesting that abiotic and biotic factors enhanced the decomposition of litter under beech. Because the spruce litter decomposition rate was low, carbon (C) stocks of the O horizons increased with the proportion of spruce, from 1.6 to 5.1 kg C·m–2. The removal of the O horizons decreased soil respiration by 31%–45%, indicating a large contribution of the mineral soil and roots to total soil respiration. Turnover times of organic C in the O horizons ranged between 5.5 years in the pure beech stand and 20.6 years in the pure spruce stand. Our results suggest that tree species conversion may alter the turnover of soil organic matter, and thus the sequestration of organic C in the O horizons.


2020 ◽  
Vol 34 (3) ◽  
pp. 575-585 ◽  
Author(s):  
Monique Weemstra ◽  
Natasa Kiorapostolou ◽  
Jasper Ruijven ◽  
Liesje Mommer ◽  
Jorad Vries ◽  
...  

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 540c-540
Author(s):  
Richard J. Crawford ◽  
David M. Eissenstat

The relationship of genotypic variation in root hair development with root proliferation, mycorrhizal colonization, and specific root length (length / dry mass) was studied in sixteen field-grown citrus relatives. The species varied widely in hair development, root length and mass density, and specific root length. No correlation was found between hair development, mycorrhizal colonization, root proliferation, and specific root length. However, there was a significant correlation (r=.55) between the percentage of total root length with hairs and the percentage of hairs with adhered soil. In a second experiment, the phenotypic plasticity in root hair development was studied in four-citrus rootstooks: Swingle citsumelo, Sour orange, Trifoliate orange and Volkamer lemon. Roots were grow” in either mineral soil or high organic matter media. After eight weeks, root length density and percentage of root length with hairs averaged over all four rootstocks was 232 % and 85 % greater in the organic media than in the mineral soil. Similar to the first experiment the percentage of total root length with hairs was significantly correlated (r=.99) with the percentage of hairs with adhered soil.


2019 ◽  
Vol 11 (16) ◽  
pp. 38
Author(s):  
Claudia Borgmann ◽  
Luciene Kazue Tokura ◽  
Bruna de Villa ◽  
Deonir Secco ◽  
Jair Antonio Cruz Siqueira ◽  
...  

The present study aimed to evaluate the initial development of safflower genotypes (Carthamus tinctorius) after different periods of seed hydration. For the study two experiments were evaluated. At first, an experiment was performed with 0, 24, 48, 72, 168 and 360 hours of seed hydration, and in the second moment, another with 0, 12, 24, 36, 48 and 60 hours of hydration. The experimental design for the two experiments was completely randomized, with four replicates and six treatments. After 30 days of conduction of the experiments were analyzed the percentage of emergency, index of emergency speed, average time of emergency and average speed of emergency. The evaluated morphological characteristics were plant height, stem diameter, root length, fresh shoot and root mass and dry shoot mass. Hydration of seeds in considerable proportions positively influences the emergence and development of safflower plants. The highest performance in the emergence of plants, size, accumulation of fresh and dry shoot mass and fresh root mass was obtained by the IAPAR genotype, which stood out in relation to the other. The greatest emergencies were obtained with seeds with 36 hours of hydration, and the lowest emergence was found after 72 hours under hydration.


2019 ◽  
Vol 144 (6) ◽  
pp. 394-404 ◽  
Author(s):  
Limeng Xie ◽  
Patricia Klein ◽  
Kevin Crosby ◽  
John Jifon

Roots impact plants’ capacity to absorb water and nutrients and thus play a vital role in tolerance to drought, salinity, and nutrient stress. In tomato (Solanum lycopersicum) breeding programs, wild tomato species have been commonly used to increase disease resistance and fruit quality and yield. However, tomato has seldom been bred for water/nutrient use efficiency or resilience to abiotic stress. Meanwhile, little knowledge of the genetic control of root traits in tomato is available. In this study, a mapping population consisting of 181 F2 progenies derived from a cross between an advanced breeding line RvT1 (S. lycopersicum) and a wild species Lche4 (Solanum cheesmaniae) was evaluated for root and shoot traits in the greenhouse. Root phenotypes were studied for the early seedling stage. Heritability estimates show that root traits are moderately or highly heritable. Root mass was highly correlated with root size (length, surface area, and volume). Shoot mass and chlorophyll content (SPAD) were moderately correlated with root mass and size. Genotyping-by-sequencing was applied to discover single nucleotide polymorphism (SNP) markers. Seven hundred and forty-two SNPs were successfully mapped, and a medium-dense linkage map was created that covered 1319.47 centimorgans (cM) with an average distance of 1.78 cM between adjacent markers. Using composite interval mapping, multiple quantitative trait loci (QTL) mapping and nonparametric mapping, 29 QTLs were identified for 12 root and shoot traits on eight chromosomes. Those QTLs of major and minor effect were involved in the differences among the F2 population. Two QTL hotspot regions associated with root mass, size, shoot mass and SPAD were identified on chromosomes 1 and 4, which was consistent with the correlation among traits. Five QTLs for shoot length and eight QTLs for SPAD were accounting for 40.01% and 55.53% of the phenotypic variation. Two QTLs were associated with 18.26% of the total variation for specific root length. The wild parent Lche4 has been characterized as a potential genetic donor of higher specific root length and might be a good parent to modify the root system of cultivated tomato.


2013 ◽  
Vol 27 (1) ◽  
pp. 7-13 ◽  
Author(s):  
T. Głąb

Abstract The field experiment was carried out on a smoothstalked meadow-grass to analyse the effect of tractor traffic on herbage production and root morphology. The multiple passes of tractor changed physical properties of soil. Increase in bulk density and penetration resistance of soil under smooth-stalked meadow-grass was recorded up to the depth of 30 cm. The tractor traffic resulted in changes in smooth-stalked meadow-grass yields. During the second and the third harvest it was found that wheel traffic decreased plant yields. For the first harvest the opposite effect in herbage production was noticed. The tractor traffic significantly changed the root morphometric properties in the upper, 0-5 cm, soil layer. Intensive tractor traffic (four and six passes) significantly increased the root length in diameter range of 0.1-0.5 mm. There were no differences in both mean root diameter and specific root length what indicated that traffic treatment applied did not change the root diameter. The results indicate that smooth-stalked meadow-grass could be recommended for compacted soils when intensive traffic is present.


HortScience ◽  
2011 ◽  
Vol 46 (10) ◽  
pp. 1411-1417 ◽  
Author(s):  
Eric M. Lyons ◽  
Peter J. Landschoot ◽  
David R. Huff

Little knowledge exists regarding root distribution of creeping bentgrass (Agrostis stolonifera) and annual bluegrass (Poa annua) in root zones of golf course putting greens. To compare root distribution between these species, three experimental cultivars of greens-type annual bluegrass and two commercial cultivars of creeping bentgrass (‘Penncross’ and ‘Penn A-4’) were established on an experimental golf green and managed under two nitrogen (N) fertility levels (195 and 65 kg N/ha/year) over a 2-year period. Creeping bentgrass had two and three times the total root mass compared with annual bluegrass during the first and second years of the experiment, respectively. At soil depths of 3–12 cm and below 12 cm, creeping bentgrass had three to four times the root mass compared with annual bluegrass at various times during the experiment. During the first year of the experiment, both species exhibited greater than 50% decrease in total root mass from June to August. During the second year, creeping bentgrass total root mass decreased 10% to 15% and annual bluegrass total root mass decreased 25% to 30% over the same period. Of the two bentgrasses, ‘Penn A-4’ creeping bentgrass exhibited greater total root mass only in the second year; however, ‘Penn A-4’ exhibited greater root mass than ‘Penncross’ below 12 cm in both years. Creeping bentgrass cultivars showed greater root mass below 12 cm at 65 kg N/ha/year compared with 195 kg N/ha/year on some sampling dates in both years. Annual bluegrass cultivars showed no change in any root mass parameters in response to N rates (data not shown), but specific root length (SRL) of annual bluegrass increased under the 65 kg N/ha/year rate compared with the 195 kg N/ha/year rate, whereas SRL of creeping bentgrass was similar at both N rates. Tiller densities of both species increased under the 195 kg N/ha/year rate. ‘Penn A-4’ exhibited higher tiller densities than ‘Penncross’ throughout the experiment and at times was equivalent to the tiller densities of the annual bluegrass cultivars. These results suggest that although creeping bentgrass increases root mass deeper in a putting green root zone mix at lower N rates (65 kg N/ha/year), annual bluegrass exhibits plasticity in specific root length in response to different N rates.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


Sign in / Sign up

Export Citation Format

Share Document