Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems

2014 ◽  
Vol 88 (5) ◽  
pp. 835-850 ◽  
Author(s):  
B. J. Wang ◽  
W. Zhang ◽  
P. Ahanbieke ◽  
Y. W. Gan ◽  
W. L. Xu ◽  
...  
2018 ◽  
Vol 10 ◽  
pp. 01019
Author(s):  
Andrzej Żabiński ◽  
Urszula Sadowska

The objective of the study was determination of the variability of morphometry and comparison of the morphological structure of the root system in winter cultivars of spelt. Four spelt cultivars were used in the study: Frankencorn, Oberkulmer Rotkorn, Schwabenkorn and Ostro. The material for the study originated from a field experiment. The roots were collected using the soil core method to the depth of 30 cm, from the rows and inter-rows, then the roots were separated using a semi-automatic hydropneumatic scrubber. The cleaned roots were manually separated and scanned, obtaining their digital images. Image analysis was performed using the Aphelion computer software. In order to characterize the root system of the spelt cultivars included in the study, values of the following indexes were determined: root dry mass (RDM), root length density (RLD), specific root length (SRL), mean root diameter (MD). Based on the obtained results it was determined that the RDM, MD and RLD indexes in all spelt cultivars attain the highest values in the row, at the depth 0–5 cm.The highest value of the RDM and MD indexes characterized the root system of the Ostro cultivar at the depth 0–5 cm. The Oberkulmerrotkorn spelt cultivar was distinguished among the tested objects by the highest value of the SRL index.


2021 ◽  
Vol 67 (No. 9) ◽  
pp. 541-547
Author(s):  
Guanghua Jing ◽  
Zhikun Chen ◽  
Qiangqiang Lu ◽  
Liyan He ◽  
Ning Zhao ◽  
...  

Fine root traits are plastic and responsive to increased nitrogen (N) deposition. However, with the restoring of the ecosystem after grain for green, little research has been reported about the response of root traits in a long-term restored ecosystem to increased N deposition. Therefore, a successive N addition experiment was conducted in a long-term restored grassland on the Loess Plateau to analyse the effects of different N addition levels (0, 2.5, 5, 10, 20 g N/m<sup>2</sup>/year) on root morphological traits, soil carbon (C) and N. Our results showed that root morphological traits (except for root diameter) firstly increased and then declined, with the maximum in the N level of 5 g/m<sup>2</sup>/year. N addition significantly increased soil organic carbon, total nitrogen, ammonium nitrogen (NH<sub>4</sub><sup>+</sup>-N) and nitrate-nitrogen (NO<sub>3</sub><sup>–</sup>-N) with the increasing N addition level, especially in the soil surface layer. Specific root length and specific root area had remarkable negative correlations with NO<sub>3</sub><sup>–</sup>-N, while root diameter and root length density had positive correlations with soil availability N and soil microbial biomass carbon. This study indicated that plants could have the threshold response to adapt to the N addition and prefer to slowly grow rather than quickly invest and return in order to adapt to the environmental stress.  


2021 ◽  
Author(s):  
Xiucheng Liu ◽  
Yuting Wang ◽  
Shuangri Liu ◽  
Miao Liu

Abstract Aims Phosphorus (P) availability and efficiency are especially important for plant growth and productivity. However, the sex-specific P acquisition and utilization strategies of dioecious plant species under different N forms are not clear. Methods This study investigated the responsive mechanisms of dioecious Populus cathayana females and males based on P uptake and allocation to soil P supply under N deficiency, nitrate (NO3 −) and ammonium (NH4 +) supply. Important Findings Females had a greater biomass, root length density (RLD), specific root length (SRL) and shoot P concentration than males under normal P availability with two N supplies. NH4 + supply led to higher total root length, RLD and SRL but lower root tip number than NO3 − supply under normal P supply. Under P deficiency, males showed a smaller root system but greater photosynthetic P availability and higher leaf P remobilization, exhibiting a better capacity to adaptation to P-deficiency than females. Under P deficiency, NO3 − supply increased leaf photosynthesis and PUE but reduced RLD and SRL in females while males had higher leaf P redistribution and photosynthetic PUE than NH4 + supply. Females had a better potentiality to cope with P deficiency under NO3 − supply than NH4 + supply; the contrary was true for males. These results suggest that females may devote to increase in P uptake and shoot P allocation under normal P availability, especially under NO3 − supply, while males adopt more efficient resource use and P remobilization to maximum their tolerance to P-deficiency.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 241 ◽  
Author(s):  
Allah Wasaya ◽  
Xiying Zhang ◽  
Qin Fang ◽  
Zongzheng Yan

Plant roots play a significant role in plant growth by exploiting soil resources via the uptake of water and nutrients. Root traits such as fine root diameter, specific root length, specific root area, root angle, and root length density are considered useful traits for improving plant productivity under drought conditions. Therefore, understanding interactions between roots and their surrounding soil environment is important, which can be improved through root phenotyping. With the advancement in technologies, many tools have been developed for root phenotyping. Canopy temperature depression (CTD) has been considered a good technique for field phenotyping of crops under drought and is used to estimate crop yield as well as root traits in relation to drought tolerance. Both laboratory and field-based methods for phenotyping root traits have been developed including soil sampling, mini-rhizotron, rhizotrons, thermography and non-soil techniques. Recently, a non-invasive approach of X-ray computed tomography (CT) has provided a break-through to study the root architecture in three dimensions (3-D). This review summarizes methods for root phenotyping. On the basis of this review, it can be concluded that root traits are useful characters to be included in future breeding programs and for selecting better cultivars to increase crop yield under water-limited environments.


2020 ◽  
Author(s):  
Jhonathan Ephrath ◽  
Alon Ben-Gal ◽  
Amnon Bustan ◽  
Lina Zhao

&lt;p&gt;Salinity affects plant growth due to both osmotic and ionic stress. The root system is essential in defense mechanisms against salinity, particularly involving salt ion avoidance or exclusion. Jojoba (&lt;em&gt;Simmondsia chinensis&lt;/em&gt;) displays significant resistance to salinity. In the present study, Jojoba was planted in 60-L plastic buckets containing perlite growth medium and were provided with eight distinct salinity levels using two operating tanks of final irrigation solutions. Response of Jojoba to salinity was measured in above ground parameters and in roots using minirhizotron access tubes and imaging analysis. Leaf phosphorous and potassium concentrations decreased with increasing salinity level while leaf manganese, calcium, sodium and chloride concentrations increased with irrigation salinity level. Jojoba plants were found to have high level of storage of salt minerals in leaves but without effects on photosynthesis or transpiration. Roots exhibited different distribution patterns under different salinity treatments. Root length density increased with increased salinity at each depth. Root number and root length increased over time. During spring, the plant growth was faster than winter. Root diameter decreased over time due to new root development. Time had a more significant effect on root length density than irrigation water salinity or soil depth. Root number and root length were not significantly affected by the salt treatments.&lt;/p&gt;


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1064e-1064 ◽  
Author(s):  
Edward F. Gilman ◽  
Michael E. Kane

Shoot and root growth were measured on Chinese juniper (Juniperus chinensis L.) Var. `Torulosa', `Sylvestris', `Pfitzeriana' and `Hetzii' 1, 2 and 3 years after planting into a simulated landscape from 10-liter black plastic containers. Mean diameter of the root system increased quadratically averaging 1, 2 m/year; whereas, mean branch spread increased at 0, 33 m/year, Three years after planting, root spread was 2, 75 times branch spread and roots covered an area 5.5 times that covered by the branches. Percentage of total root length located within the dripline of the plants remained fairly constant (71-77%) during the first 3 years following planting. Root length density per unit area increased over time but decreased with distance from the trunk. In the first 2 years after planting shoot weight increased faster than root `weight. However, during the third year after planting, the root system increased in mass and size at a faster rate than the shoots. Root length was correlated with root weight within root-diameter classes, Root spread and root area were correlated with trunk area, branch spread and crown area.


Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 256 ◽  
Author(s):  
Kurniatun Hairiah ◽  
Widianto Widianto ◽  
Didik Suprayogo ◽  
Meine Van Noordwijk

Tree root systems stabilize hillslopes and riverbanks, reducing landslide risk, but related data for the humid tropics are scarce. We tested fractal allometry hypotheses on differences in the vertical and horizontal distribution of roots of trees commonly found in agroforestry systems and on shear strength of soil in relation to root length density in the topsoil. Proximal roots of 685 trees (55 species; 4–20 cm stem diameter at breast height, dbh) were observed across six landscapes in Indonesia. The Index of Root Anchoring (IRA) and the Index of Root Binding (IRB) were calculated as ΣDv2/dbh2 and as ΣDh2/dbh2, respectively, where Dv and Dh are the diameters of vertical (angle > 45°) and horizontal (angle < 45°) proximal roots. High IRA values (>1.0) were observed in coffee and several common shade trees. Common fruit trees in coffee agroforestry had low medium values, indicating modest ‘soil anchoring’. Where root length density (Lrv) in the topsoil is less than 10 km m−3 shear strength largely depends on texture; for Lrv > 10 shear strength was >1.5 kg m−2 at the texture tested. In conclusion, a mix of tree species with deep roots and grasses with intense fine roots provides the highest hillslope and riverbank stability.


2011 ◽  
Vol 59 (2) ◽  
pp. 137-147 ◽  
Author(s):  
M. Nedunchezhiyan ◽  
K. Laxminarayana ◽  
K. Rajasekhara Rao ◽  
B. Satapathy

A field experiment was conducted at the Regional Centre of the Central Tuber Crops Research Institute, Dumduma, Bhubaneswar for three consecutive years (2006–2008) under rainfed conditions on Alfisols to quantify the effects of strip intercropping on crop yields and yield components. A significantly higher yield was obtained from sweet potato (Ipomoea batatas L.) border rows when pigeonpea (Cajanus cajan (L.) Millsp.) was intercropped. Analyses of sweet potato yield components indicated that the number of roots/plant, root length and root diameter were significantly higher in border rows when rice (Oryza sativa L.), finger millet (Eleusine coracana L.) and pigeonpea were used as intercrop compared to monoculture sweet potato. The number of tubers/plant of sweet potato in border rows was significantly lower when maize (Zea mays L.) was intercropped, but the root length and root diameter were found to increase compared to sole sweet potato. The yields of rice, finger millet, maize and pigeonpea in inside rows in strip cropping were a little higher than in monoculture. The yield difference was mainly due to an increase in the number of seeds/panicle or cob. Sweet potato was the dominant crop when grown with rice or finger millet, but it was the subordinate crop when grown along with maize or pigeonpea. Sweet potato yields were consistently higher in strip intercropping than in monoculture when calculated across all the strips on an equal area basis. A strip intercropping system involving sweet potato + pigeonpea resulted in a higher land equivalent ratio (1.31) and net return ( $623.9) compared to the other forms of intercropping and to monocropping.


Author(s):  
Haroon Shahzad ◽  
Muhammad Iqbal ◽  
Safdar Bashir ◽  
Muhammad Farooq

The aggravating threat for today&rsquo;s agriculture is provision of food security to ever-escalating eating mouths utilizing scarce resources. Water scarcity is restraining humans to produce more from drops of water in place of gallons. Root is present at soil-plant interface and is main water extractor for plant. Its growth pattern varies as soil moisture conditions fluctuates. Present pot study consisting of two factors i.e. organic substrates (Farm manure, Poultry Manure and Molasses) and different water stress levels (50, 75, 100 and 125% of AWCs) using maize as test crop to assess their impact on different growth parameters (especially root growth). The experiment was conducted using CRD under factorial arrangement. Root length (44.55 cm), root fresh &amp; dry biomass (71.10 g and 24.30 g), root diameter (1.73 mm), root volume (0.24 cm3) and root length density (7.4 &times; 10&minus;3 cm cm&minus;3) were observed in farm manure treated pots at 75% AWC that was statistically indistinguishable from all other treatments at same water level and 100% water availability but eloquently greater than plants of all treatments at 50% and 125% available water contents. Shoot length, dry and fresh weights were observed greater in plants having 100% available moistures, that were at par with 75% water treated plants. Comparing treatments for all of the parameters in multivariate cluster analysis it was concluded that 75% available water contents produce almost similar to 100% along with the benefit of water security.


Sign in / Sign up

Export Citation Format

Share Document