scholarly journals Reduction mechanisms of Ag(I) and Au(III) in the synthesis of silver and gold nanoparticles using leaf extract of Terminalia catappa

2021 ◽  
Vol 21 (2) ◽  
pp. 89-98
Author(s):  
MUHAMMAD ZAKIR ◽  
MAMING MAMING ◽  
MISKA SANDA LEMBANG ◽  
ESTY YURNITA LEMBANG

Synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) was carried out by the reduction method with leaf extract of Ketapang (Terminalia catappa). The biomolecules present in the extract generated the reduction of Ag+ and Au3+ ions from AgNO3 and HAuCl4, respectively. The growth of nanoparticles was monitored by UV-Vis spectrophotometer. The maximum absorption of biosynthesis of AgNP and AuNP were observed in the respective range of 421-431nm and 530-535nm. Those peaks correspond to surface plasmon absorbance of AgNP and AuNP, respectively. Analysis on the functional groups change of the extract by Fourier Transform Infra Red (FTIR) Spectroscopy showed the formation of carbonyl- from hydroxyl-groups which suggested the oxidation and reduction processes involved in the formation of both nanoparticles. The average size distributions determined by PSA (Particle Size Analyzer) are 55-71nm and 18-44nm for AgNP and AuNP, respectively. Morphology of the silver nanoparticles was observed by Scanning Electron Microscope (SEM) and the structure of the compounds was characterized using X-ray Diffraction (XRD). The shape of AgNP varied from triangular, cubic and hexagonal polyshaped, while AuNP were spherical. XRD studies showed that the nanoparticles obtained were crystalline gold and silver.

2010 ◽  
Vol 7 (4) ◽  
pp. 1334-1339 ◽  
Author(s):  
Balaprasad Ankamwar

The synthesis of eco-friendly nanoparticles is evergreen branch of nanoscience for biomedical application. Low cost of synthesis and non toxicity are main features make it more attractive potential option for biomedical field and elsewhere. Here, we report the synthesis of gold nanoparticles in aqueous medium usingTerminalia catappa(Almond) leaf extract as the reducing and stabilizing agent. On treating chloroauric acid solutions withTerminalia catappa(TC) leaf extract rapid reduction of chloroaurate ions is observed leading to the formation of highly stable gold nanoparticles in solution. TEM analysis of the gold nanoparticles indicated that they ranged in size from 10 to 35 nm with average size of 21.9 nm.


2020 ◽  
Vol 21 (1) ◽  
pp. 30
Author(s):  
Dewi Mustika Rahim ◽  
Netti Herawati ◽  
Hasri Hasri

ABSTRAK Telah dilakukan penelitian tentang sintesis nanopartikel perak menggunakan bioreduktor ekstrak daun teh hijau (Camellia Sinensis) dengan iradiasi microwave. yang untuk mengetahui pengaruh waktu sintesis dan pengaruh pH stabilizer terhadap sintesis nanopartikel perak ekstrak daun teh hijau dengan iradiasi microwave serta karakterisasinya. Larutan AgNO3 3 mM direduksi menggunakan ekstrak daun teh hijau dan di iradiasi microwave pada variasi waktu sintesis 1-5 menit. Penentuan waktu sintesis optimal menggunakan spektrofotometer UV-Vis diukur setiap 1 menit. Nanopartikel dengan waktu sistesis 4 menit, pH stabilizer menggunakan asam sitrat dan NaOH dengan pH 6-9. Karakterisasi nanopartikel menggunakan instrumen SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy) dan PSA (Particle Size Analyzer). Hasil penelitian menunjukkan bahwa waktu sintesis optimal adalah 4 menit. Morfologi nanopatikel perak yang dikarakterisasi menggunakan SEM (Scanning Electron Microscopy) yang dihasilkan cenderung beragregasi. Adanya kecenderungan nanopartikel untuk beragregasi menyebabkan ukuran atau diameter nanopartikel tidak seragam. Ukuran dan distribusi ukuran nanopartikel perak dikarakterisasi menggunakan PSA(Particle Size Analyzer) dihasilkan pada pH 6 antara 31,01 – 402,44 nm dengan rata-rata ukuran sebesar 91 nm, pH 7 antara 35,03 – 740,899 nm dengan rata-rata ukuran sebesar 106,3 nm, pH 8 antara 39,58 – 193,48 nm dengan rata-rata ukuran 71,7, dan pH 9 antara 35,03 – 171,25 nm dengan rata-rata ukuran sebesar 64,4 nm. Disimpulkan bahwa hasil sintesis nanopartikel perak terkecil diperoleh pada pH 9 dan waktu sintesis 4 menit. Kata kunci: Ekstrak Daun Teh Hijau, Nanopartikel Perak, Iradiasi Microwave ABSTRACT Research has been carried out on the synthesis of silver nanoparticles using a bioreductor of green tea leaf extract (Camellia Sinensis) by irradiation microwave.This research aimed to determine the effect of synthesis time and pH stabilizer on the synthesis of silver nanoparticles of green tea leaf extract by microwave irradiation and it’s characterization. The 3 mM AgNO3 solution was reduced using green tea leaf extract and microwave irradiated in a variation of the synthesis time 1-5 minutes. The determining optimum of sythesis time was done by analysis of UV-Vis spectrum for every minutes. Nanoparticles with a synthesis time of 4 minutes, the stabilizer of silver nanoparticles used citric acid and NaOH with a pH of 6-9. Characterization of nanoparticles using SEM-EDS instrument (Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy) and PSA (Particle Size Analyzer). The results showed that the optimal synthesis time was 4 minutes. The morphology of silver nanopaticles characterized using SEM produced tends to aggregate. The tendency of nanoparticles to aggregate causes size or diameter of nanoparticles was random. The size and distribution of size silver nanoparticles characterized using PSA were produced at pH 6 between 31.01 - 402.44 nm with an average size of 91 nm, pH 7 between 35.03 - 740,899 nm with an average size amounting to 106.3 nm, pH 8 between 39.58 - 193.48 nm with an average size of 71.7, and pH 9 between 35.03 - 171.25 nm with an average size of 64.4 nm. It was concluded that the synthesis of the smallest silver nanoparticles was obtained at pH 9 and synthesis time of 4 minutes. Keywords: Green Tea Leaf Extract, Silver Nanoparticles, Microwave Irradiation


2016 ◽  
Vol 8 (1) ◽  
pp. 1523-1532 ◽  
Author(s):  
Sujata D Wangkheirakpam ◽  
Wangkheirakpam Radhapiyari Devi ◽  
Chingakham Brajakishore Singh ◽  
Warjeet S Laitonjam

The leaf extract of Strobilanthes flaccidifolius Nees. was used for the synthesis of silver nanoparticles through a green technique of synthesis. The nanoparticles was characterized by UV-VIS spectroscopy which proves the formation silver nanoparticles. FTIR (Fourier Transmission infra red spectroscopy) study was carried out to assess the biomolecule as indigo precursors, Energy dispersion X-ray analysis(EDX) data further proves it. EPR (Electron paramagnetic resonance technique) shows the free radical in silver neutral state and XRD(X-ray diffraction technique) also repots silver neutral formation.The morphology and the shape of the silver nanoparticles were determined by Scanning electron microscopy(SEM) and Tunneling electron microscopy (TEM).The nanoparticles adopted spherical morphology and the size ranging from 6nm to 54.11nm and average size was determined as 12.15± 5.3nm.The nanoparticles had antimicrobial activity


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1486
Author(s):  
Ganesh Shimoga ◽  
Eun-Jae Shin ◽  
Sang-Youn Kim

Two xerogels made of 4-pyridyl cholesterol (PC) and silver-nanocomposites (SNCs) thereof have been studied for their efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of aqueous sodium borohydride. Since in-situ silver doping will be effective in ethanol and acetone solvents with a PC gelator, two silver-loaded PC xerogels were prepared and successive SNCs were achieved by using an environmentally benign trisodium citrate dehydrate reducing agent. The formed PC xerogels and their SNCs were comprehensively investigated using different physico-chemical techniques, such as field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), powdered X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis). The FE-SEM results confirm that the shape of xerogel-covered silver nanoparticles (SNPs) are roughly spherical, with an average size in the range of 30–80 nm. Thermal degradation studies were analyzed via the sensitive graphical Broido’s method using a TGA technique. Both SNC-PC (SNC-PC-X1 and SNC-PC-X2) xerogels showed remarkable catalytic performances, with recyclable conversion efficiency of around 82% after the fourth consecutive run. The apparent rate constant (kapp) of SNC-PC-X1 and SNC-PC-X2 were found to be 6.120 × 10-3 sec-1 and 3.758 × 10-3 sec-1, respectively, at an ambient temperature.


2018 ◽  
Vol 34 (6) ◽  
pp. 3088-3094 ◽  
Author(s):  
Abdul Wahid Wahab ◽  
Abdul Karim ◽  
Nursiah La Nafie ◽  
Nurafni Nurafni ◽  
I. Wayan Sutapa

Silver nanoparticles have been synthesized by reduction method using extract of Muntingia calabura L. leaf a bioreductor. The process of silver nanoparticles formation was monitored by UV-Vis method. The results showed that the absorbance values increased according to the increase of reaction time. Maximum absorption of silver nanoparticle was obtained at a wavelength of 41-421 nm. The size of silver nanoparticles was determined using a PSA (Particle Size Analyzer) with a particle size distribution of 97.04 nm. The functional groups compound that contribute in the synthesis was analyzed using Fourier Transform Infrared Spectroscopy (FTIR). Morphology of the silver nanoparticles was observed by an Scanning Electron Microscope instrument and the structure characterization of the compounds were analyzed using X-Ray Diffraction. The glucose nanosensor based on silver nanoparticles have the measurement range of 1 mM - 4 mM with the regretion (R2) is 0,9516, the detection limit of sensor is 3,2595 mM, the sensitivity of sensor is 2,0794 A. mM-1. mM-2.


2013 ◽  
Vol 12 (04) ◽  
pp. 1350024 ◽  
Author(s):  
R. SELVAKUMAR ◽  
S. P. SURIYARAJ ◽  
V. JAYAVIGNESH ◽  
K. SWAMINATHAN

The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Osvelia E. Rodríguez-Luis ◽  
Rene Hernandez-Delgadillo ◽  
Rosa Isela Sánchez-Nájera ◽  
Gabriel Alejandro Martínez-Castañón ◽  
Nereyda Niño-Martínez ◽  
...  

Nanotechnology is a new discipline with huge applications including medicine and pharmacology industries. Although several methods and reducing agents have been employed to synthesize silver nanoparticles, reactive chemicals promote toxicity and nondesired effects on the human and biological systems. The objective of this work was to synthesize silver nanoparticles fromGlycyrrhiza glabraandAmphipterygium adstringensextracts and determine their bactericidal and antimycotic activities againstEnterococcus faecalisandCandida albicansgrowth, respectively. 1 and 10 mM silver nitrate were mixed with an extract ofGlycyrrhiza glabraandAmphipterygium adstringens.Green silver nanoparticles (AgNPs) were characterized by TEM, Vis-NIR, FTIR, fluorescence, DLS, TGA, and X-ray diffraction (XRD) analysis. Bactericidal and antimycotic activities of AgNPs were determined by Kirby and Bauer method and cell viability MTT assays. AgNPs showed a spherical shape and average size of 9 nm if prepared withGlycyrrhiza glabraextract and 3 nm if prepared withAmphipterygium adstringensextract. AgNPs inhibited the bacterial and fungal growth as was expected, without a significant cytotoxic effect on human epithelial cells. Altogether, these results strongly suggest that AgNPs could be an interesting option to control oral biofilms.


2014 ◽  
Vol 1704 ◽  
Author(s):  
Sathiraju Annapurna ◽  
Yathapu Suresh ◽  
Bojja Sreedhar ◽  
Ganghishetti Bhikshamaiah ◽  
A.K. Singh

ABSTRACTCopper nanoparticles are synthesized successfully through chemical reduction of different copper salts stabilized by Ocimum Sanctum Leaf extract, a natural biopolymer. The resulting copper nanoparticles are characterized by using UV Visible Absorption Spectrometer, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Small Angle X-ray Scattering (SAXS) and Fourier Transform Infrared Spectroscopy (FTIR) experiments. Copper nanoparticles prepared display an absorption peak at around 558 nm. X-ray diffraction analysis shows that the particles are FCC crystalline. SEM and TEM display the formation of copper nanoparticles with an average size of 10 nm. The SAXS studies demonstrate the formation of spherical nanoparticles with bimodal size distribution. The FTIR spectrum analysis has confirmed the presence of functional groups of stabilizer Ocimum Sanctum leaf extract in capping the copper nanoparticles.


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


Sign in / Sign up

Export Citation Format

Share Document