scholarly journals The Development of Solar PV Car to Reduce Carbon Emissions from Transport Sector

2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Moch. Farhan Arieffadillah ◽  
I Nyoman Satya Kumara ◽  
Yoga Divayana

Global warming is contributed by human activities in many sectors. The sector that contributes significantly to generating carbon emissions is transportation sector. An effort to reduce carbon emissions is by utilizing PV panels on vehicle’s body surface. This paper reviews the development of vehicle-mounted PV panels around the world. The review covers technical specifications, manufacturer, and function of the PV panel on the vehicle. The objective is to get insight on the current development of vehicle with PV panels. The information presented in this paper is expected to provide updates for stakeholders in the field of renewable energy and land transportation in Indonesia. Also, this information can be used as a reference for further research on vehicle with PV panels both in Indonesia or elsewhere that are developing future environmentally-friendly vehicle. The result is a database consists of 948 vehicle which has solar PV around the body of the vehicle. 936 vehicles or about 99% were made for solar car race and only 1% for commercial and prototype. The solar PV system serves as a main or auxiliary power supply of the vehicle depending on whether they are hybrid or fully electric cars.

Author(s):  
Oladokun Sulaiman Olanrewaju

Like all modes of transportation that use fossil fuels, ships produce carbon dioxide emissions that significantly contribute to global climate change and ocean acidification. Additionally, ships release other pollutants that also contribute to the problem and exacerbate climate change. Considering the large volume of ships on the high seas, ship emissions pose a significant threat to human health. The ocean is exposed to vast amounts of sunrays and has a great potential to be explored by the maritime sector and green power industry. Solar energy hybrid assisted power to support auxiliary power for the instruments on board the vessel is explored in a UMT vessel. The vessel that is used in this case study is Discovery XI, which is a 16.50 meter diving boat owned by University Malaysia Terengganu. The study explores the feasibility of using solar energy as a supporting power for marine vessel auxiliaries. The reduction of fuel usage after installing the solar PV system on the boat is determined, as well as an economic analysis. The power requirement for the vessel’s electrical system is estimated. The fuel and money saved is also estimated for comparison purposes of the vessel using the solar PV system and the vessel without the PV system. Economic analyses are performed, the Annual Average Cost (AAC) between a vessel using solar PV system and a vessel without solar PV system is estimated, and the period of the return of investment for the vessel with solar PV system is also estimated. The use of a photovoltaic solar system to assist the boat power requirement will benefit the environment through Green House Gas (GHG) reduction, and the use of solar as a supporting alternative energy could cut the cost of boat operation through fuel savings.


Implementation of modified AHP coupled with MOORA methods for modeling and optimization of solar photovoltaic (PV)-pumped hydro energy storage (PHS) system parameter is presented in this chapter. Work optimized the parameters, namely unmet energy (UE), size of PV-panel, and volume of upper reservoir (UR), to get economic cost of energy (COE) and excess energy (EE). The trail no.11 produces the highest assessment values compared to the other trails and provides EE as 16.19% and COE as 0.59 $/kWh for PV-PHS. ANOVA and parametric study is also performed to determine the significance of the parameters for PV-PHS performance. Investigation results indicate the effectiveness and significant potential for modeling and optimization of PV-PHS system and other solar energy systems.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1772
Author(s):  
Saria Bukhary ◽  
Jacimaria Batista ◽  
Sajjad Ahmad

Drinking water treatment, wastewater treatment, and water distribution are energy-intensive processes. The goal of this study was to design the unit processes of an existing drinking water treatment plant (DWTP), evaluate the associated energy consumption, and then offset it using solar photovoltaics (PVs) to reduce carbon emissions. The selected DWTP, situated in the southwestern United States, utilizes coagulation, flocculation, sedimentation, filtration, and chlorination to treat 3.94 m3 of local river water per second. Based on the energy consumption determined for each unit process (validated using the plant’s data) and the plant’s available landholding, the DWTP was sized for solar PV (as a modeling study) using the system advisor model. Total operational energy consumption was estimated to be 56.3 MWh day−1 for the DWTP including water distribution pumps, whereas energy consumption for the DWTP excluding water distribution pumps was 2661 kWh day−1. The results showed that the largest consumers of energy—after the water distribution pumps (158.1 Wh m−3)—were the processes of coagulation (1.95 Wh m−3) and flocculation (1.93 Wh m−3). A 500 kW PV system was found to be sufficient to offset the energy consumption of the water treatment only operations, for a net present value of $0.24 million. The net reduction in carbon emissions due to the PV-based design was found to be 450 and 240 metric tons CO2-eq year−1 with and without battery storage, respectively. This methodology can be applied to other existing DWTPs for design and assessment of energy consumption and use of renewables.


2018 ◽  
Vol 225 ◽  
pp. 04008 ◽  
Author(s):  
Shaharin A. Sulaiman ◽  
M. Rosman M. Razif ◽  
Tan Dei Han ◽  
Samson M. Atnaw ◽  
S. Norazilah A. Tamili

There are some weaknesses of using solar PV system especially when there is issue of soiling on the surface of solar PV panel. The consequences for absence of this such study can cause unanticipated cost in the operation of solar PV panel. The objective of this project is to study the trend of soiling rate over different time period and its effect on the performance of solar PV panel in Malaysia and to develop a simple prediction model for cleaning interval of solar PV system in Malaysia. The study was conducted on real-time basis on a building’s roof. Measurements of solar irradiance, voltage, current and the mass of dust collected were performed from both clean and dirty panels. It was discovered that the Monthly Test was significant with 4.53% of performance drop. Further analysis was conducted by running prediction model for cleaning interval. Intersection of graph plotting and fixed cleaning cost gives answer of cleaning interval that can be performed. It can be concluded that for every two and half month is the recommended time interval to perform regular cleaning to maximise electrical power generation by solar PV system in Malaysia.


2021 ◽  
Vol 335 ◽  
pp. 03002
Author(s):  
Chong Jia Joon ◽  
Kelvin Chew Wai Jin

Solar photovoltaic (PV) panels have been widely used to convert the renewable energy from the sun to electrical energy to power electrical loads but suffers from relatively low efficiency between 15% to 22%. Typically, the panels have an average lifespan of 25 to 30 years but could degrade quicker due to the panel overheating. Beyond the optimum working temperature of 25°C, a drop of efficiency by 0.4 to 0.5% for every 1°C had been reported. For solar PV applications in urban regions, passive cooling is beneficial due to limited amount of space and lower energy consumption compared to active cooling. A solar PV system with augmented cooling was conducted at a balcony of a condominium from 10am until 2pm. The solar PV system consisted of an Arduino controller, solar panel module, temperature sensor and LCD monitor. Reusable cold and hot gel packs were attached to the bottom of the solar PV. Both setups of solar PV panel with and without the cooling system were placed at the balcony simultaneously for measurement of temperature, output voltage and current. From this research, the outcome of implementing a cooling system to the solar PV increases the efficiency of the energy conversion.


Author(s):  
Nur Fairuz Mohamed Yusof ◽  
Mazwin Mazlan

This project presents the development of Photovoltaic (PV) push-pull inverter for alternating current (AC) application. There are two main systems in this project which is the PV system and the inverter system. The photovoltaic system consists of the PV panel which is used to seep sunshine to recharge the battery and the solar charger controller circuit that prevent battery from surpluses voltage is connected between solar PV and battery. While the push-pull inverter play a pivotal role in switching from direct current (DC) voltage to AC voltage for the inverter system. Then the AC voltage rose to 230 V by using transformer. The push-pull inverter switching is controlled by a multi-vibrator driver circuit. This project used two light emitting diode (LED) light bulb as an AC load and Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) as the power switches. This project had been analysed through software and hardware prototype for comparison purposed. The efficiency of ideal system that obtains from software simulation is 94.9% while for the hardware prototype is nearly to 95%. While the total harmonic distortion (THD) for both voltage and current is 48.32% from software simulation and 47.9% from hardware prototype analysis. The results have been found in good agreement with the analysis presented in this paper.


2020 ◽  
Vol 182 ◽  
pp. 03005
Author(s):  
Rodney H.G. Tan ◽  
Chee Kang Er ◽  
Sunil G. Solanki

This paper presents the circuitry modeling of the solar photovoltaic MPPT lead-acid battery charge controller for the standalone system in MATLAB/Simulink environment. A buck topology is utilized as a DC-DC converter for the charge controller implementation. The maximum power of the photovoltaic panel is tracked by the Perturb and Observe MPPT algorithm. The battery charge controller charges the lead-acid battery using a three-stage charging strategy. The three charging stages include the MPPT bulk charge, constant voltage absorption charge, and float charge stage. The performance analysis of the model is carried out in the following aspects, there are MPPT tracking performance, battery charging performance and overall charge controller efficiency performance are benchmarked with commercial MPPT charge controller for validation. The performance result shows that the MPPT is capable to track to the PV panel maximum point at any solar irradiance variation within 0.5 seconds with maximum power tracking efficiency up to 99.9 %. The three-stage charging strategy also successfully demonstrated. The overall charge controller average efficiency achieved up to 98.3 % which matches many high end commercial solar PV MPPT charge controller product specifications. This validated model contributes to a better sizing of PV panel and battery energy storage for the small and medium standalone PV system.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Edward M. Querikiol ◽  
Evelyn B. Taboada

A study was conducted to evaluate the performance of a 1.5 kW micro off-grid solar power generator in a 2-hectare area of a 23-hectare agricultural farm located in Camotes Island, Cebu, Philippines (10°39.4′ N, 124°20.9′ E). The area requires at least 3000 liters of water every day to irrigate its plantation of passion fruit and dragon fruit; however, there is no water source within the immediate vicinity that can support such requirement. A 1/2 horsepower water pump was installed to provide the required irrigation. A 1.5 kW solar photovoltaic (PV) system consisting of 6 units of 250-watts solar PV panel with corresponding 6 units of 200 ampere-hour deep cycle batteries managed by a 3-kW industrial grade inverter provided the power for the water pump and supplied for the electricity demand of the farm. The actual energy usage of the farm was measured from the built-in monitoring of the charge controller and the installed system was analyzed to determine its efficiency in meeting the actual load demand. The HOMER optimization tool was used to determine the optimal configuration for the micro off-grid system based on the actual load demand. Simulation results showed that the optimum configuration that could supply the actual load is a 2.63 kW all-PV system with 8 kWh batteries. Sensitivity analysis was done to consider (1) possible increase in electrical load when the current plantation expands either in progression or outright to its full-scale size of 23 hectares and (2) variations in fuel cost. This study can be considered a good model in assessing renewable energy needs of farms in the country, which can be operationalized for agricultural purposes.


2020 ◽  
pp. 47-58
Author(s):  
Shubham Srivastava ◽  
Deepak ◽  
CS Malvi

Although the good intensity of solar radiation is desirable for a solar PV system, but the power output drops with a rise in its temperature. The open-circuit voltage of PV panel decreases with increase in its temperature, thus lowering the PV effect. Many studies have been carried out by the researcher to tackle this problem, proposing modification in conventional PV system design and utilizing water, air, PCM, and oil as a cooling medium in various cooling systems. Although PCM has fascinating characteristics as a thermal energy storage medium in the solar system, but low thermal conductivity became a barrier in energy conversion. Few studies suggested the use of nanoparticles in PCM to increase its heat transfer rate but very few studies were focused on nano PCM incorporated solar PV system. This paper summarized the researches done so far on nano PCM solar PV system by delineating the methods, and materials involved.


Sign in / Sign up

Export Citation Format

Share Document