Economic analysis of agricultural nutrient management practices in the South Tobacco Creek Watershed in Manitoba, Canada

2013 ◽  
Vol 68 (4) ◽  
pp. 257-269
Author(s):  
M. Khakbazan ◽  
C. Hamilton ◽  
J. Elliott ◽  
J. Yarotski
2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


2010 ◽  
Vol 45 (4) ◽  
pp. 451-461 ◽  
Author(s):  
Nandana Perera ◽  
Bahram Gharabaghi ◽  
Peter Noehammer ◽  
Bruce Kilgour

Abstract Occurrence of increasing chloride concentrations in urban streams of cold climates, mainly due to road salt application, has raised concerns on its adverse effects on aquatic and terrestrial ecosystems. Therefore, there is a need for a better understanding of processes associated with road salt application and subsequent discharge into the environment in order to develop management practices to minimize detrimental effects of chlorides. The chloride mass analysis for the Highland Creek watershed based on four years of hourly monitoring data indicates that approximately 60% of the chlorides applied on the watershed enter streams prior to subsequent salting period, 85% of which occurs during the period between November and March. Contribution of private de-icing operations on chloride mass input within Highland Creek watershed was estimated to be approximately 38%, indicating its significance in overall chloride mass balance. Salt application rates, as well as chloride output in the streams, vary spatially based on land use, influencing chloride concentrations in surface waters. The estimated groundwater chloride concentration of 275 mg/L indicates that some aquatic organisms in Highland Creek would potentially be at risk even outside the winter period under dry weather flow conditions.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 379-387 ◽  
Author(s):  
S. Mostaghimi ◽  
P. W. McClellan ◽  
R. A. Cooke

The Nomini Creek Watershed/Water Quality monitoring project was initiated in 1985, as part of the Chesapeake Bay Agreement of 1983, to quantify the impacts of agricultural best management practices (BMPs) on improving water quality. The watershed monitoring system was designed to provide a comprehensive assessment of the quality of surface and groundwater as influenced by changes in land use, agronomic, and cultural practices in the watershed over the duration of the project. The primary chemical characteristics monitored include both soluble and sediment-bound nutrients and pesticides in surface and groundwater. Water samples from 8 monitoring wells located in agricultural areas in the watershed were analyzed for 22 pesticides. A total of 20 pesticides have been detected in water samples collected. Atrazine is the most frequently detected pesticide. Detected concentrations of atrazine ranged from 0.03 - 25.56 ppb and occurred in about 26 percent of the samples. Other pesticides were detected at frequencies ranging from 1.6 to 14.2 percent of all samples collected and concentrations between 0.01 and 41.89 ppb. The observed concentrations and spatial distributions of pesticide contamination of groundwater are compared to land use and cropping patterns. Results indicate that BMPs are quite effective in reducing pesticide concentrations in groundwater.


1999 ◽  
Vol 39 (12) ◽  
pp. 133-140
Author(s):  
J. Y. Li ◽  
D. Banting

Storm water quality management in urbanized areas remains a challenge to Canadian municipalities as the funding and planning mechanisms are not well defined. In order to provide assistance to urbanized municipalities in the Great Lakes areas, the Great Lakes 2000 Cleanup Fund and the Ontario Ministry of the Environment commissioned the authors to develop a Geographic Information System planning tool for storm water quality management in urbanized areas. The planning tool comprises five steps: (1) definition of storm water retrofit goals and objectives; (2) identification of appropriate retrofit storm water management practices; (3) formulation of storm water retrofit strategies; (4) evaluation of strategies with respect to retrofit goals and objectives; and (5) selection of storm water retrofit strategies. A case study of the fully urbanized Mimico Creek wateshed in the City of Toronto is used to demonstrate the application of the planning tool.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
SAMBORLANG K. WANNIANG ◽  
A. K. SINGH

A field experiment was conducted during kharif 2011 on experimental farm of the College of Post Graduate Studies (CAU–Imphal), Umiam (Meghalaya) to evaluate the effect of integration of green manuring, FYM and fertilizers as integrated nutrient management (INM) practices on growth and developmental behaviour of quality protein maize cultivar QPM 1. The data revealed that comparatively higher amount of primary nutrients were added in green manured maize plots in comparison to non green manured treatments. Green manuring also left a positive response on plant height, CGR, RGR leaf area, and dry matter accumulation in plants though the difference between green manured and non-green manured treatments was at par. Treatments 75 % RDF + 5 t FYM ha-1, 50 % RDF + 7.5 t FYM ha-1, 100 % RDF ha-1 and 75 % RDF + 2.5 t FYM ha-1 recorded significantly higher values of all the above said growth parameters over 50 % RDF + 5 t FYM ha-1 and control treatments. At all stages of observations, the maximum dry matter was associated with RDF (recommended doses of fertilizers) which was at par with 75 % RDF + 5 t FYM ha-1, but significantly higher over the plant dry weight recorded from all remaining treatments. A Significant difference in CGR at 30 – 60 and 60 – 90 DAS stage and in RGR at 90 DAS - harvest stage was observed due to various combinations of recommended dose of fertilizer with different doses of FYM. Number of days taken to attain the stages of 50% tasselling, silking and maturity did not differ significantly due to green manuring. However, treatment 75 % RDF + 5 t FYM ha-1 took significantly lesser number of days for these stages than other treatment combinations. The superiority of the treatment 75 % RDF + 5 t FYM ha-1 indicated a possibility of substituting 25% of RDF with 5 t FYM ha-1 without any loss in dry matter accumulation in plants of the quality protein hybrid maize in mid-hill ecosystems of Meghalaya.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 777
Author(s):  
Erythrina Erythrina ◽  
Arif Anshori ◽  
Charles Y. Bora ◽  
Dina O. Dewi ◽  
Martina S. Lestari ◽  
...  

In this study, we aimed to improve rice farmers’ productivity and profitability in rainfed lowlands through appropriate crop and nutrient management by closing the rice yield gap during the dry season in the rainfed lowlands of Indonesia. The Integrated Crop Management package, involving recommended practices (RP) from the Indonesian Agency for Agricultural Research and Development (IAARD), were compared to the farmers’ current practices at ten farmer-participatory demonstration plots across ten provinces of Indonesia in 2019. The farmers’ practices (FP) usually involved using old varieties in their remaining land and following their existing fertilizer management methods. The results indicate that improved varieties and nutrient best management practices in rice production, along with water reservoir infrastructure and information access, contribute to increasing the productivity and profitability of rice farming. The mean rice yield increased significantly with RP compared with FP by 1.9 t ha–1 (ranges between 1.476 to 2.344 t ha–1), and net returns increased, after deducting the cost of fertilizers and machinery used for irrigation supplements, by USD 656 ha–1 (ranges between USD 266.1 to 867.9 ha–1) per crop cycle. This represents an exploitable yield gap of 37%. Disaggregated by the wet climate of western Indonesia and eastern Indonesia’s dry climate, the RP increased rice productivity by 1.8 and 2.0 t ha–1, with an additional net return gain per cycle of USD 600 and 712 ha–1, respectively. These results suggest that there is considerable potential to increase the rice production output from lowland rainfed rice systems by increasing cropping intensity and productivity. Here, we lay out the potential for site-specific variety and nutrient management with appropriate crop and supplemental irrigation as an ICM package, reducing the yield gap and increasing farmers’ yield and income during the dry season in Indonesia’s rainfed-prone areas.


Sign in / Sign up

Export Citation Format

Share Document