Synthesis of stable coalitions in the economy based on fundamental criteria of the portfolio theory

2021 ◽  
Vol 20 (9) ◽  
pp. 1678-1702
Author(s):  
Oleg L. PODLINYAEV ◽  
David A. GERTSEKOVICH ◽  
Sergei N. LARIN

Subject. The article outlines basic principles of a mathematical model for formation of stable coalitions in the economy at the interstate level. Objectives. We focus on developing a mathematical model to build such coalitions. Methods. The study employs the portfolio theory, risk-return model, correlation and regression analysis, technical and fundamental analysis. The proposed model rests on fundamental provisions of creating a multicomponent, widely diversified investment portfolio. The model uses the key concepts, like expected profitability, risk level, industry diversification and hedging, in combination with the synthesis of a diversified group of leading commodity indices. Results. We show possibilities of using internal (based on the country’s indices) and external (based on other countries’ indices) correlation analysis, according to data on trends in economic indices, to ensure sectoral diversification within the country and maximize the international level of sectoral diversification, respectively. We performed a fundamental analysis of the condition of economies of the countries included in the coalition, and of the countries, which are considered to be included in the coalition as appropriate. The paper assesses positive and negative factors of joint functioning of the economies of the coalition countries, from the point of view of their geographic location. Conclusions. The model makes it possible to build new optimal coalitions in the economy, to analyze the practicability of further existence of previously formed coalitions, and to update the composition of coalitions, according to trends in the world economy development.

2017 ◽  
Vol 992 (4) ◽  
pp. 32-38 ◽  
Author(s):  
E.G. Voronin

The article opens a cycle of three consecutive publications dedicated to the phenomenon of the displacement of the same points in overlapping scans obtained adjacent CCD matrices with opto-electronic imagery. This phenomenon was noticed by other authors, but the proposed explanation for the origin of displacements and the resulting estimates are insufficient, and developed their solutions seem controversial from the point of view of recovery of the measuring accuracy of opticalelectronic space images, determined by the physical laws of their formation. In the first article the mathematical modeling of the expected displacements based on the design features of a scanning opto-electronic imaging equipment. It is shown that actual bias cannot be forecast, because they include additional terms, which may be gross, systematic and random values. The proposed algorithm for computing the most probable values of the additional displacement and ways to address some of the systematic components of these displacements in a mathematical model of optical-electronic remote sensing.


2002 ◽  
Vol 34 (03) ◽  
pp. 484-490 ◽  
Author(s):  
Asger Hobolth ◽  
Eva B. Vedel Jensen

Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3063-3073 ◽  
Author(s):  
Leonid Berlyand

We consider a mathematical model which describes an ideal superfluid with a large number of thin insulating rods and an ideal superconductor reinforced by such rods. We suggest a homogenization procedure for calculating effective properties of both composite media. From the numerical point of view the procedure amounts to solving a linear problem in a periodicity cell of unit size.


Author(s):  
Iulia Clitan ◽  
◽  
Adela Puscasiu ◽  
Vlad Muresan ◽  
Mihaela Ligia Unguresan ◽  
...  

Since February 2020, when the first case of infection with SARS COV-2 virus appeared in Romania, the evolution of COVID-19 pandemic continues to have an ascending allure, reaching in September 2020 a second wave of infections as expected. In order to understand the evolution and spread of this disease over time and space, more and more research is focused on obtaining mathematical models that are able to predict the evolution of active cases based on different scenarios and taking into account the numerous inputs that influence the spread of this infection. This paper presents a web responsive application that allows the end user to analyze the evolution of the pandemic in Romania, graphically, and that incorporates, unlike other COVID-19 statistical applications, a prediction of active cases evolution. The prediction is based on a neural network mathematical model, described from the architectural point of view.


Author(s):  
V. Y. Stepanov

The article gives a classification of the main components of unmanned aerial vehicle (UAV) systems, gives the areas in which the application of UAVs is actual in practice today. Further, the UAV is considered in more detail from the point of view of its flight dynamics analysis, the equation necessary for creating a mathematical model, as well as the model of an ordinary dynamic system as a non-stationary nonlinear controlled object, is given. Next, a description of the developed software for modeling and a description of program algorithm are given. Finally, a conclusion describes the necessary directions for further scientific researches.


2021 ◽  
Vol 25 (3) ◽  
pp. 332-341
Author(s):  
I. V. Fokin ◽  
A. N. Smirnov

The aim was to create a mathematical model describing the development of a production (shop-to-shop) routing of mechanical engineering products based on a 3D model and allowing the cost of the final product to be reduced. The developed mathematical model was simulated based on 3D models designed in the Siemens NX system, which were subsequently imported into the *stp format and recognized by a designed module written in the Phyton programming language. The factors of the production environment affecting the formation of the production routing of mechanical engineering products were determined. A diagram of the algorithm for the “constructive element - technological operation - means of technological equipment (equipment-tool)” relationship was developed. Based on the results of testing the developed mathematical model, the use of neural networks as a tool for the implementation and automation of the work was found advantageous as compared to the standard scheme of work of a process engineer when developing a production routing of mechanical engineering products. These advantages include a decrease in the time for the development of a routing and the cost of the final product. The developed model has a practical limitation consisting in a rather complex geometry of some structural elements of a unit, which impedes the development of an algorithm for recognizing their structure. The use of a neural network prototype in automatic mode is advisable for relatively simple parts (including a flange, hole, chamfer and rounding). However, since the number of simple units from the recognition point of view amounts to about 40% among the nomenclature of manufactured units, the reduction in the development time of the technological process in comparison with the conventional approach comprises only 10–25% of the total time of technological preparation.


2021 ◽  
Vol 316 ◽  
pp. 928-935
Author(s):  
Alexander Shapoval ◽  
Iurii Savchenko ◽  
Oleg Markov

Developed a mathematical model, which makes it possible to optimize, from the point of view of defect formation, the parameters of stress concentration in a deformable elastic body of the materials being processed, destruction is considered as a method for creating defects at a submicroscopic level in various media. Getting expressions of conformal reflection of single circle on an arbitrary area, using a conformal reflection and transformation of Laplace, it is possible to design behavior of a tensely deformed state of solid at the arbitrary loading.


Innotrans ◽  
2020 ◽  
pp. 31-36
Author(s):  
Alexander V. Martynenko ◽  
◽  
Alexander A. Shevtsov ◽  

This paper is devoted to the quantitative description of the spatial distribution of passenger traffic based on the classical gravity model on the example of interurban bus service between Yekaterinburg and other cities of the Sverdlovsk region. The influence of factors such as population, distance between localities, and ticket price on the volume of passenger traffic was studied. As a result of the correlation and regression analysis, it was found that both the distance between localities and the ticket price can be used as a measure of the remoteness of localities. However, the quality of the resulting regression model does not change. The spatial distribution of interurban bus passenger traffic depends on the measure of distance of localities from each other and the size of their population. Moreover, the size of the population is a much more significant factor than the measure of distance. From a practical point of view, this means that when predicting passenger traffic, demographic factors must first be taken into account.


Sign in / Sign up

Export Citation Format

Share Document