scholarly journals INNOVATION IN GREEN PROCESS ENGINEERING UNDERGRADUATE LABORATORY COURSE - INTEGRATED LABORATORIES FOR PARTICULATE OPERATIONS, HEAT TRANSFER AND MASS TRANSFER COURSES

Author(s):  
Chunbao (Charles) Xu ◽  
L. Sang ◽  
D. Bao ◽  
H. Siddiqui ◽  
K. Abbott ◽  
...  

In the past two years since 2011, the course instructor (Dr. Xu), along with the students in the Green Process Engineering (GPE) class and TAs, has developed an innovative undergraduate laboratory course that integrates laboratories for particulate operations, heat and mass transfer courses. The integrated lab course runs as research projects that apply and integrate the concepts reviewed in the above courses. One of the key objectives of this course is to train team work and leadership. To this end, the students are grouped into 4 groups, and each group carries out one of the following 4 projects for 6h/week and approx.6 weeks, rotates the projects and completes all by the end of this full-year course: (1) Particulate operations - heterogeneous catalyst particles (Au/MgAl2O4) formation, handling and characterization; (2) Convective heat transfer enhancement in a stirred tank reactor; (3) Liquid phase mass transfer in a gas-liquid stirred reactor system; (4) A green process for the production of acetic acid via aqueous phase oxidation of ethanol with air using Au/MgAl2O4 catalyst: effects of mass transfer and reaction kinetics. As the course learning objectives, students should be able to propose experimental methodologies and design their own experimental procedure, secure and prepare their own experimental materials and equipment and facilities, perform the experiments and collect data, interpret the experimental results using the principles and knowledge from the relevant courses, and present their results effectively.

2000 ◽  
Vol 53 (8) ◽  
pp. 219-235 ◽  
Author(s):  
Terukazu Ota

Heat and mass transfer in the separated, reattached, and redeveloping regions of incompressible or compressible flow is very important in relation to many types of heat exchangers. There have been numerous works published describing these flows for a wide variety of geometric configurations, In the present article, a survey is made of published studies of heat transfer in the separated, reattached, and redeveloping regions of incompressible flow around or in a wide variety of flow configurations. Flow configurations cited in the article are the downward facing step, the sudden expansion plane channel, the abrupt expansion tube, the blunt flat plate, the longitudinal blunt circular cylinder, and the surface mounted obstacle. The laminar and turbulent flow cases using both experimental and numerical methodologies are reviewed. This review article includes 268 references.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


Author(s):  
Yao Li ◽  
Haiqing Si ◽  
Jingxuan Qiu ◽  
Yingying Shen ◽  
Peihong Zhang ◽  
...  

Abstract The plate-fin heat exchanger has been widely applied in the field of air separation and aerospace due to its high specific surface area of heat transfer. However, the low heat transfer efficiency of its plate bundles has also attracted more attention. It is of great significance to optimize the structure of plate-fin heat exchanger to improve its heat transfer efficiency. The plate bundle was studied by combining numerical simulation with experiment. Firstly, according to the heat and mass transfer theory, the plate bundle calculation model of plate-fin heat exchanger was established, and the accuracy of the UDF (User-Defined Functions) for describing the mass and heat transfer was verified. Then, the influences of fin structure parameters on the heat and mass transfer characteristics of channel were discussed, including the height, spacing, thickness and length of fins. Finally the influence of various factors on the flow field performance under different flow states was integrated to complete the optimal design of the plate bundle.


Sign in / Sign up

Export Citation Format

Share Document