scholarly journals Energy efficiency of flooded roofs: the University of Alicante Museum

Author(s):  
V. Echarri Iribarren ◽  
A. Espinosa Fernández ◽  
A. Galiano Garrigós
Author(s):  
Carlos E. Lopez ◽  
Constantine Tarawneh ◽  
Arturo Fuentes ◽  
Harry Siegal

Abstract Based on projected freight truck fuel efficiency, freight railroad and equipment suppliers need to identify, evaluate and implement technologies and/or operating practices to maintain traditional railroad economic competitiveness. The railway industry uses systems that record the total energy efficiency of a train but not energy efficiency or consumption by components. Lowering the energy consumption of certain train components will result in an increase in its overall energy efficiency, which will yield cost benefits for all the stakeholders. One component of interest is the railroad bearing whose power consumption varies depending on several factors that include railcar load, train speed, condition of bearing whether it is healthy or defective, and type of defect. Being able to quantify the bearing power consumption, as a function of the variables mentioned earlier, would make it possible to obtain optimal operating condition ranges that minimize energy consumption and maximize train energy efficiency. Several theoretical studies were performed to estimate the power consumption within railroad bearings, but those studies lacked experimental validation. For almost a decade now, the University Transportation Center for Railway Safety (UTCRS) at the University of Texas Rio Grande Valley (UTRGV) has been collecting power consumption data for railroad bearings under various loads, speeds, ambient temperatures, and bearing condition. The objective of this ongoing study is to use the experimentally acquired power consumption to come up with a correlation that can be used to quantify the bearing power consumption as a function of load, speed, ambient temperature, and bearing condition. Once obtained, the model can then be used to determine optimal operating practices that maximize the railroad bearing energy efficiency. In addition, the developed model will provide insight into possible areas of improvement for the next generation of energy efficient railroad bearings. This paper will discuss ongoing work including experimental setup and findings of energy consumption of bearings as function of railcar load, train speed, condition of bearing whether it is healthy or defective, and type of defect. Findings of energy consumption are converted into approximations of diesel gallons to quantify the effect of nominal energy consumption of the bearings and show economic value and environmental impact.


Author(s):  
Elisa Penalvo-López ◽  
F. Javier Cárcel-Carrasco ◽  
Joaquín Montañana-Romeu ◽  
Vicente León-Martínez

Energy efficiency in buildings is one of the main challenges in EU policy, since it is difficult to find common strategies and policies among Member States.  This article describes the USE Efficiency project, an initiative to create a common training framework for energy efficiency systems in buildings based on the Energy Performance Building Directive (EPBD), through university actions. Universities and students are proposed as shining examples both for energy efficiency solutions and for energy efficiency behaviour.  Moreover, involving university students guarantees acting on closest future market players and most convincing actor in diffusion of public opinions. The project aims to improve energy efficiency in university buildings and to establish training program for students around European countries.  In fact, this activity involves 9 Universities (Technology Faculties and Faculties of Engineering) and 4 technological and market players from widespread countries in EU.Initially, a mapping of the methodologies used for evaluating energy efficiency at the different countries is carried out. Students are trained in energy efficiency methods and strategies, having real work experience implementing these Energy Performance Assessment (EPA) methodologies in their own buildings. The wide geographical coverage of the consortium allows an important crossover of methodologies to achieve technical results even to a professional and technological level. Then, the analysed buildings at each university are monitored in order to collect data, which are then used to plan solutions to improve energy performance of the university buildings. This paper describes this innovative training initiative, which involves students as main actors, working and interacting together with professors and technicians in order to improve energy efficiency in their educational centres.


2015 ◽  
Vol 22 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Stefan Szczukowski ◽  
Józef Tworkowski ◽  
Mariusz J. Stolarski ◽  
Michał Krzyżaniak

Abstract Field experiments with willow (Salix L.) coppice cultivation and Eko-Salix systems have been conducted at the University of Warmia and Mazury since 1992. In that wider context, the aim of the work described here was to compare energy inputs involved in setting up a plantation and producing biomass, and to assess the efficiency of willow-chips production under the coppice and Eko-Salix systems. The energy gain determined in the experiments was several to more than twenty times as great as the inputs needed to operate the plantation and to harvest willow biomass, this leaving both systems of willow cultivation under study attractive where setting up short-rotation coppices is concerned.


Author(s):  
Ivan M. Gryshchenko ◽  
Mykhailo O. Verhun ◽  
Andrii S. Prokhorovskyi

This article attempts to verify the relevance of building a network of energy knowledge hub centres to tackle the priority objective in enhancing energy efficiency and energy saving management in higher education institutions. It is emphasized that the issues of careful and wise use of fuels and energy resources challenge more government efforts, active use of advanced projects to manage energy saving and energy efficiency through the integrated use of different energy sources. The study argues that to identify the potential for energy saving, setting regulatory indicators of energy consumption, determining the key energy saving measures and target objects in the public sector where energy saving programs are planned to be implemented, there is a need to conduct energy surveys with further developing of energy passports for buildings. In the frameworks of this study, the following research methods were used: abstract and logical analysis – to interpret the essence of energy saving concepts for universities; systemic approach – to identify the specifics of energy saving projects implementation in universities; in-depth analysis and synthesis – to forecast the university development priority area of the "Energy efficiency and energy saving"; system, structural, comparative and statistical analyses – to assess the energy consumption in universities; economic and statistical methods – to evaluate the level and the dynamics of the energy sources use before and after the implementation of project activities; graph-based and analytical methods – to facilitate visual representation and schematic presentation of forecasts for further development of energy efficiency and energy saving systems. The study offers a mechanism to shape a network of energy knowledge hub centres to forecast a priority development area of energy efficiency and energy saving programs in higher education institutions along with providing an overview on the process of energy saving based on energy knowledge hub centres by carrying out the following tasks: project identification, scanning, energy audit, implementation of an action plan, and monitoring. It has been verified that to enhance the energy supply system in the university buildings, the following objectives should be attained: using the energy knowledge hub to forecast the university energy efficiency and energy saving programme, implementing an automated individual heating station with weather regulation and installing new radiator heaters.


2018 ◽  
Vol 48 ◽  
pp. 04005
Author(s):  
Cristina Messa ◽  
Giacomo Magatti ◽  
Massimiliano Rossetti ◽  
Matteo Colleoni ◽  
Massimo Labra ◽  
...  

Since its foundation, in 1998, the University of Milano-Bicocca has been pursuing the objective to make its structures sustainable from an environmental, social and economic point of view. To this end, in 2015 the University of Milano-Bicocca created BASE (Bicocca Ambiente Società Economia - Bicocca Environment Society Economy), an internal office aimed at promoting the interaction between research and training and at stimulating sustainability both within the University and outside. BASE proposes a holistic approach to sustainability including energy efficiency, waste reduction, sustainable mobility, climate change attention and water and food supply. The report will focus on the interventions recently carried out in the various fields, paying particular attention to the issues of waste management and of mobility.


2019 ◽  
Author(s):  
Ali Al-Dossary ◽  
Heather Dillon ◽  
Jordan Farina

Abstract Variable Transmission Glazing (VTG) windows are an energy efficiency measures that have relatively high first cost. This paper describes the in-situ performance of VTG installed in an atrium space at the University of Portland. An experiment was conducted using thermocouples and photosensors to examine temperature gradients and solar gains across electrochromic glazing windows to quantify the performance of the installed system in terms of energy and cost saving. The system performance was measured with an average efficiency of 98.73% when the VTG was operating. The annual savings of the glazing system installed was estimated to be $7,683.


2020 ◽  
Vol 12 (21) ◽  
pp. 8908
Author(s):  
Rubén Garrido-Yserte ◽  
María-Teresa Gallo-Rivera

Higher education institutions (HEIs) have a huge potential to save energy as they are significantly more energy-intensive in comparison with commercial offices and manufacturing premises. This paper provides an overview of the chief actions of sustainability and energy efficiency addressed by the University of Alcalá (Madrid, Spain). The policies implemented have shifted the University of Alcalá (UAH) to become the top-ranking university in Spain and one of the leading universities internationally on environmentally sustainable practices. The paper highlights two key elements. First, the actions adopted by the managerial teams, and second, the potential of public–private collaboration when considering different stakeholders. A descriptive study is developed through document analysis. The results show that energy consumption per user and energy consumption per area first fall and are then maintained, thereby contributing to meeting the objectives of the Spanish Government’s Action Plan for Energy Saving and Efficiency (2011–2020). Because of the research approach, the results cannot be generalized. However, the paper fulfils an identified need to study the impact of HEIs and their stakeholders on sustainable development through initiatives in saving energy on their campuses and highlights the role of HEIs as test laboratories for the introduction of innovations in this field (monitoring, sensing, and reporting, among others).


2016 ◽  
Vol 17 (2) ◽  
pp. 188-207 ◽  
Author(s):  
Nandarani Maistry ◽  
Harold Annegarn

Purpose – The purpose of this paper is to outline efforts at the University of Johannesburg, a large metropolitan university in Gauteng province, to examine energy efficiency within the context of the green campus movement, through the analysis of electricity consumption patterns. The study is particularly relevant in light of the cumulative 230 per cent increase in electricity costs between 2008 and 2014 in South Africa that has forced institutions of higher education to seek ways to reduce energy consumption. Design/Methodology/Approach – A quantitative research design was adopted for the analysis of municipal electricity consumption records using a case study approach to identify trends and patterns in consumption. The largest campus of the University of Johannesburg, which is currently one of the largest residential universities in South Africa, was selected as a case study. Average diurnal consumption profiles were plotted according to phases of the academic calendar, distinguished by specific periods of active teaching and research (in-session); study breaks, examinations and administration (out-of-session); and recesses. Average profiles per phase of the academic calendar were constructed from the hourly electricity consumption and power records using ExcelTM pivot tables and charts. Findings – It was found that the academic calendar has profound effects on energy consumption by controlling the level of activity. Diurnal maximum consumption corresponds to core working hours, peaking at an average of 2,500 kWh during “in-session” periods, 2,250 kWh during “out-of-session” periods and 2,100 kWh during recess. A high base load was evident throughout the year (between 1,300 and 1,650 kWh), mainly attributed to heating and cooling. By switching off the 350 kW chiller plant on weekdays, a 9 per cent electricity reduction could be achieved during out-of-session and recess periods. Similarly, during in-session periods, a 6 per cent reduction could be achieved. Practical implications – Key strategies and recommendations are presented to stimulate energy efficiency implementation within the institution. Originality Value – Coding of consumption profiles against the academic calendar has not been previously done in relation to an academic institution. The profiles were used to establish the influence of the academic calendar on electricity consumption, which along with our own observation were used to identify specific consumption reduction opportunities worth pursuing.


Sign in / Sign up

Export Citation Format

Share Document