scholarly journals Visual Encoding and Decoding of the Human Brain Based on Shared Features

Author(s):  
Chao Li ◽  
Baolin Liu ◽  
Jianguo Wei

Using a convolutional neural network to build visual encoding and decoding models of the human brain is a good starting point for the study on relationship between deep learning and human visual cognitive mechanism. However, related studies have not fully considered their differences. In this paper, we assume that only a portion of neural network features is directly related to human brain signals, which we call shared features. In the encoding process, we extract shared features from the lower and higher layers of the neural network, and then build a non-negative sparse map to predict brain activities. In the decoding process, we use back-propagation to reconstruct visual stimuli, and use dictionary learning and a deep image prior to improve the robustness and accuracy of the algorithm. Experiments on a public fMRI dataset confirm the rationality of the encoding models, and comparing with a recently proposed method, our reconstruction results obtain significantly higher accuracy.

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Richard Evan Sutanto ◽  
Sukho Lee

Several recent studies have shown that artificial intelligence (AI) systems can malfunction due to intentionally manipulated data coming through normal channels. Such kinds of manipulated data are called adversarial examples. Adversarial examples can pose a major threat to an AI-led society when an attacker uses them as means to attack an AI system, which is called an adversarial attack. Therefore, major IT companies such as Google are now studying ways to build AI systems which are robust against adversarial attacks by developing effective defense methods. However, one of the reasons why it is difficult to establish an effective defense system is due to the fact that it is difficult to know in advance what kind of adversarial attack method the opponent is using. Therefore, in this paper, we propose a method to detect the adversarial noise without knowledge of the kind of adversarial noise used by the attacker. For this end, we propose a blurring network that is trained only with normal images and also use it as an initial condition of the Deep Image Prior (DIP) network. This is in contrast to other neural network based detection methods, which require the use of many adversarial noisy images for the training of the neural network. Experimental results indicate the validity of the proposed method.


Author(s):  
Pieter Spronck ◽  
Ida Sprinkhuizen-Kuyper ◽  
Eric Postma ◽  
Rens Kortmann

In our research we use evolutionary algorithms to evolve robot controllers for executing elementary behaviours. This chapter focuses on the behaviour of pushing a box between two walls. The main research question addressed in this chapter is: how can a neural network learn to control the box-pushing task using evolutionary-computation techniques? In answering this question we study the following three characteristics by means of simulation experiments: (1) the fitness function, (2) the neural network topology and (3) the parameters of the evolutionary algorithm. We find that appropriate choices for these characteristics are: (1) a global external fitness function, (2) a recurrent neural network, and (3) a regular evolutionary algorithm augmented with the doping technique in which the initial population is supplied with a solution to a hard task instance. We conclude by stating that our findings on the relatively simple box-pushing behaviour form a good starting point for the evolutionary learning of more complex behaviours.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 732
Author(s):  
Kairui Cao ◽  
Guanglu Hao ◽  
Qingfeng Liu ◽  
Liying Tan ◽  
Jing Ma

Fast steering mirrors (FSMs), driven by piezoelectric ceramics, are usually used as actuators for high-precision beam control. A FSM generally contains four ceramics that are distributed in a crisscross pattern. The cooperative movement of the two ceramics along one radial direction generates the deflection of the FSM in the same orientation. Unlike the hysteresis nonlinearity of a single piezoelectric ceramic, which is symmetric or asymmetric, the FSM exhibits complex hysteresis characteristics. In this paper, a systematic way of modeling the hysteresis nonlinearity of FSMs is proposed using a Madelung’s rules based symmetric hysteresis operator with a cascaded neural network. The hysteresis operator provides a basic hysteresis motion for the FSM. The neural network modifies the basic hysteresis motion to accurately describe the hysteresis nonlinearity of FSMs. The wiping-out and congruency properties of the proposed method are also analyzed. Moreover, the inverse hysteresis model is constructed to reduce the hysteresis nonlinearity of FSMs. The effectiveness of the presented model is validated by experimental results.


2020 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Rong Yang ◽  
Robert Wang ◽  
Yunkai Deng ◽  
Xiaoxue Jia ◽  
Heng Zhang

The random cropping data augmentation method is widely used to train convolutional neural network (CNN)-based target detectors to detect targets in optical images (e.g., COCO datasets). It can expand the scale of the dataset dozens of times while consuming only a small amount of calculations when training the neural network detector. In addition, random cropping can also greatly enhance the spatial robustness of the model, because it can make the same target appear in different positions of the sample image. Nowadays, random cropping and random flipping have become the standard configuration for those tasks with limited training data, which makes it natural to introduce them into the training of CNN-based synthetic aperture radar (SAR) image ship detectors. However, in this paper, we show that the introduction of traditional random cropping methods directly in the training of the CNN-based SAR image ship detector may generate a lot of noise in the gradient during back propagation, which hurts the detection performance. In order to eliminate the noise in the training gradient, a simple and effective training method based on feature map mask is proposed. Experiments prove that the proposed method can effectively eliminate the gradient noise introduced by random cropping and significantly improve the detection performance under a variety of evaluation indicators without increasing inference cost.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1082
Author(s):  
Fanqiang Meng

Risk and security are two symmetric descriptions of the uncertainty of the same system. If the risk early warning is carried out in time, the security capability of the system can be improved. A safety early warning model based on fuzzy c-means clustering (FCM) and back-propagation neural network was established, and a genetic algorithm was introduced to optimize the connection weight and other properties of the neural network, so as to construct the safety early warning system of coal mining face. The system was applied in a coal face in Shandong, China, with 46 groups of data as samples. Firstly, the original data were clustered by FCM, the input space was fuzzy divided, and the samples were clustered into three categories. Then, the clustered data was used as the input of the neural network for training and prediction. The back-propagation neural network and genetic algorithm optimization neural network were trained and verified many times. The results show that the early warning model can realize the prediction and early warning of the safety condition of the working face, and the performance of the neural network model optimized by genetic algorithm is better than the traditional back-propagation artificial neural network model, with higher prediction accuracy and convergence speed. The established early warning model and method can provide reference and basis for the prediction, early warning and risk management of coal mine production safety, so as to discover the hidden danger of working face accident as soon as possible, eliminate the hidden danger in time and reduce the accident probability to the maximum extent.


2009 ◽  
Vol 610-613 ◽  
pp. 450-453
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Jin Zhang ◽  
Gui Ping He

The fracture problems of ecomaterial (aluminum alloyed cast iron) under extra-low cycle rotating bending fatigue loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent in results comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth, the presetting deflection and tip radius of the notch, and the output parameters, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


Author(s):  
Dr. Gauri Ghule , Et. al.

Number of hidden neurons is necessary constant for tuning the neural network to achieve superior performance. These parameters are set manually through experimentation. The performance of the network is evaluated repeatedly to choose the best input parameters.Random selection of hidden neurons may cause underfitting or overfitting of the network. We propose a novel fuzzy controller for finding the optimal value of hidden neurons automatically. The hybrid classifier helps to design competent neural network architecture, eliminating manual intervention for setting the input parameters. The effectiveness of tuning the number of hidden neurons automatically on the convergence of a back-propagation neural network, is verified on speech data. The experimental outcomes demonstrate that the proposed Neuro-Fuzzy classifier can be viably utilized for speech recognition with maximum classification accuracy.


2012 ◽  
Vol 217-219 ◽  
pp. 2722-2725
Author(s):  
Jian Xue Chen

Fault diagnosis is an important problem in the process of chemical industry and the artificial neural network is widely applied in fault diagnosis of chemical process. A hybrid algorithm combining ant colony optimization (ACO) algorithm with back-propagation (BP) algorithm, also referred to as ACO-BP algorithm, is proposed to train the neural network weights and thresholds. The basic theory and steps of ACO-BP algorithm are given, and applied in fault diagnosis of the continuous stirred-tank reactor (CSTR). Experimental results prove that ACO-BP algorithm has good fault diagnosis precision, and it can detect the fault in CSTR promptly and effectively.


Author(s):  
Payam Hanafizadeh ◽  
Neda Rastkhiz Paydar ◽  
Neda Aliabadi

This article evaluates the effect of the motivation of employees on organizational performance using a neural network. Studies show that employee motivation influences organizational performance, particularly in organizations providing services. Methods based on statistical computations like regression and correlation analysis were used to measure the mutual effects of these factors. As these statistical methods necessitate the fulfillment of certain requirements like normally distributed data and because they are not able to express non-linear relations and hidden complicated patterns, a back propagation neural network has been used. The neural network was trained by using data from 300 questionnaires answered by hospital employees and 1933 patients hospitalized in a private hospital in Tehran over three successive months.


Sign in / Sign up

Export Citation Format

Share Document