scholarly journals TLPG-Tracker: Joint Learning of Target Localization and Proposal Generation for Visual Tracking

Author(s):  
Siyuan Li ◽  
Zhi Zhang ◽  
Ziyu Liu ◽  
Anna Wang ◽  
Linglong Qiu ◽  
...  

Target localization and proposal generation are two essential subtasks in generic visual tracking, and it is a challenge to address both the two efficiently. In this paper, we propose an efficient two-stage architecture which makes full use of the complementarity of two subtasks to achieve robust localization and high-quality proposals generation of the target jointly. Specifically, our model performs a novel deformable central correlation operation by an online learning model in both two stages to locate new target centers while generating target proposals in the vicinity of these centers. The proposals are refined in the refinement stage to further improve accuracy and robustness. Moreover, the model benefits from multi-level features aggregation in a neck module and a feature enhancement module. We conduct extensive ablation studies to demonstrate the effectiveness of our proposed methods. Our tracker runs at over 30 FPS and sets a new state-of-the-art on five tracking benchmarks, including LaSOT, VOT2018, TrackingNet, GOT10k, OTB2015.

2020 ◽  
Vol 34 (07) ◽  
pp. 11037-11044
Author(s):  
Lianghua Huang ◽  
Xin Zhao ◽  
Kaiqi Huang

A key capability of a long-term tracker is to search for targets in very large areas (typically the entire image) to handle possible target absences or tracking failures. However, currently there is a lack of such a strong baseline for global instance search. In this work, we aim to bridge this gap. Specifically, we propose GlobalTrack, a pure global instance search based tracker that makes no assumption on the temporal consistency of the target's positions and scales. GlobalTrack is developed based on two-stage object detectors, and it is able to perform full-image and multi-scale search of arbitrary instances with only a single query as the guide. We further propose a cross-query loss to improve the robustness of our approach against distractors. With no online learning, no punishment on position or scale changes, no scale smoothing and no trajectory refinement, our pure global instance search based tracker achieves comparable, sometimes much better performance on four large-scale tracking benchmarks (i.e., 52.1% AUC on LaSOT, 63.8% success rate on TLP, 60.3% MaxGM on OxUvA and 75.4% normalized precision on TrackingNet), compared to state-of-the-art approaches that typically require complex post-processing. More importantly, our tracker runs without cumulative errors, i.e., any type of temporary tracking failures will not affect its performance on future frames, making it ideal for long-term tracking. We hope this work will be a strong baseline for long-term tracking and will stimulate future works in this area.


2019 ◽  
Vol 55 (13) ◽  
pp. 742-745 ◽  
Author(s):  
Kang Yang ◽  
Huihui Song ◽  
Kaihua Zhang ◽  
Jiaqing Fan

2021 ◽  
Vol 20 (3) ◽  
pp. 1-25
Author(s):  
Elham Shamsa ◽  
Alma Pröbstl ◽  
Nima TaheriNejad ◽  
Anil Kanduri ◽  
Samarjit Chakraborty ◽  
...  

Smartphone users require high Battery Cycle Life (BCL) and high Quality of Experience (QoE) during their usage. These two objectives can be conflicting based on the user preference at run-time. Finding the best trade-off between QoE and BCL requires an intelligent resource management approach that considers and learns user preference at run-time. Current approaches focus on one of these two objectives and neglect the other, limiting their efficiency in meeting users’ needs. In this article, we present UBAR, User- and Battery-aware Resource management, which considers dynamic workload, user preference, and user plug-in/out pattern at run-time to provide a suitable trade-off between BCL and QoE. UBAR personalizes this trade-off by learning the user’s habits and using that to satisfy QoE, while considering battery temperature and State of Charge (SOC) pattern to maximize BCL. The evaluation results show that UBAR achieves 10% to 40% improvement compared to the existing state-of-the-art approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. P. Vasco ◽  
V. Savona

AbstractWe optimize a silica-encapsulated silicon L3 photonic crystal cavity for ultra-high quality factor by means of a global optimization strategy, where the closest holes surrounding the cavity are varied to minimize out-of-plane losses. We find an optimal value of $$Q_c=4.33\times 10^7$$ Q c = 4.33 × 10 7 , which is predicted to be in the 2 million regime in presence of structural imperfections compatible with state-of-the-art silicon fabrication tolerances.


2021 ◽  
Vol 11 (4) ◽  
pp. 1728
Author(s):  
Hua Zhong ◽  
Li Xu

The prediction interval (PI) is an important research topic in reliability analyses and decision support systems. Data size and computation costs are two of the issues which may hamper the construction of PIs. This paper proposes an all-batch (AB) loss function for constructing high quality PIs. Taking the full advantage of the likelihood principle, the proposed loss makes it possible to train PI generation models using the gradient descent (GD) method for both small and large batches of samples. With the structure of dual feedforward neural networks (FNNs), a high-quality PI generation framework is introduced, which can be adapted to a variety of problems including regression analysis. Numerical experiments were conducted on the benchmark datasets; the results show that higher-quality PIs were achieved using the proposed scheme. Its reliability and stability were also verified in comparison with various state-of-the-art PI construction methods.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-35
Author(s):  
Muhammad Anis Uddin Nasir ◽  
Cigdem Aslay ◽  
Gianmarco De Francisci Morales ◽  
Matteo Riondato

“Perhaps he could dance first and think afterwards, if it isn’t too much to ask him.” S. Beckett, Waiting for Godot Given a labeled graph, the collection of -vertex induced connected subgraph patterns that appear in the graph more frequently than a user-specified minimum threshold provides a compact summary of the characteristics of the graph, and finds applications ranging from biology to network science. However, finding these patterns is challenging, even more so for dynamic graphs that evolve over time, due to the streaming nature of the input and the exponential time complexity of the problem. We study this task in both incremental and fully-dynamic streaming settings, where arbitrary edges can be added or removed from the graph. We present TipTap , a suite of algorithms to compute high-quality approximations of the frequent -vertex subgraphs w.r.t. a given threshold, at any time (i.e., point of the stream), with high probability. In contrast to existing state-of-the-art solutions that require iterating over the entire set of subgraphs in the vicinity of the updated edge, TipTap operates by efficiently maintaining a uniform sample of connected -vertex subgraphs, thanks to an optimized neighborhood-exploration procedure. We provide a theoretical analysis of the proposed algorithms in terms of their unbiasedness and of the sample size needed to obtain a desired approximation quality. Our analysis relies on sample-complexity bounds that use Vapnik–Chervonenkis dimension, a key concept from statistical learning theory, which allows us to derive a sufficient sample size that is independent from the size of the graph. The results of our empirical evaluation demonstrates that TipTap returns high-quality results more efficiently and accurately than existing baselines.


2021 ◽  
Author(s):  
Khemchand Dewangan ◽  
Dadan Singh ◽  
Sandeep Kumar Singh Patel ◽  
Kamlesh Kumar Shrivas

A two-stage synthesis process was employed to prepare high-quality nanocrystalline vanadium nitride (VN) for superconducting applications. Firstly, monodispersed amorphous VOx nanoparticles were obtained via thermal-decomposition of vanadium (III) acetylacetonate [V(acac)3]...


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4890
Author(s):  
Athanasios Dimitriadis ◽  
Christos Prassas ◽  
Jose Luis Flores ◽  
Boonserm Kulvatunyou ◽  
Nenad Ivezic ◽  
...  

Cyber threat information sharing is an imperative process towards achieving collaborative security, but it poses several challenges. One crucial challenge is the plethora of shared threat information. Therefore, there is a need to advance filtering of such information. While the state-of-the-art in filtering relies primarily on keyword- and domain-based searching, these approaches require sizable human involvement and rarely available domain expertise. Recent research revealed the need for harvesting of business information to fill the gap in filtering, albeit it resulted in providing coarse-grained filtering based on the utilization of such information. This paper presents a novel contextualized filtering approach that exploits standardized and multi-level contextual information of business processes. The contextual information describes the conditions under which a given threat information is actionable from an organization perspective. Therefore, it can automate filtering by measuring the equivalence between the context of the shared threat information and the context of the consuming organization. The paper directly contributes to filtering challenge and indirectly to automated customized threat information sharing. Moreover, the paper proposes the architecture of a cyber threat information sharing ecosystem that operates according to the proposed filtering approach and defines the characteristics that are advantageous to filtering approaches. Implementation of the proposed approach can support compliance with the Special Publication 800-150 of the National Institute of Standards and Technology.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 853
Author(s):  
Jesús Sánchez-Oro ◽  
Ana D. López-Sánchez ◽  
Anna Martínez-Gavara ◽  
Alfredo G. Hernández-Díaz ◽  
Abraham Duarte

This paper presents a hybridization of Strategic Oscillation with Path Relinking to provide a set of high-quality nondominated solutions for the Multiobjective k-Balanced Center Location problem. The considered location problem seeks to locate k out of m facilities in order to serve n demand points, minimizing the maximum distance between any demand point and its closest facility while balancing the workload among the facilities. An extensive computational experimentation is carried out to compare the performance of our proposal, including the best method found in the state-of-the-art as well as traditional multiobjective evolutionary algorithms.


Sign in / Sign up

Export Citation Format

Share Document