scholarly journals Toward Optimal Solution for the Context-Attentive Bandit Problem

Author(s):  
Djallel Bouneffouf ◽  
Raphael Feraud ◽  
Sohini Upadhyay ◽  
Irina Rish ◽  
Yasaman Khazaeni

In various recommender system applications, from medical diagnosis to dialog systems, due to observation costs only a small subset of a potentially large number of context variables can be observed at each iteration; however, the agent has a freedom to choose which variables to observe. In this paper, we analyze and extend an online learning framework known as Context-Attentive Bandit, We derive a novel algorithm, called Context-Attentive Thompson Sampling (CATS), which builds upon the Linear Thompson Sampling approach, adapting it to Context-Attentive Bandit setting. We provide a theoretical regret analysis and an extensive empirical evaluation demonstrating advantages of the proposed approach over several baseline methods on a variety of real-life datasets.

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 380
Author(s):  
Emanuele Cavenaghi ◽  
Gabriele Sottocornola ◽  
Fabio Stella ◽  
Markus Zanker

The Multi-Armed Bandit (MAB) problem has been extensively studied in order to address real-world challenges related to sequential decision making. In this setting, an agent selects the best action to be performed at time-step t, based on the past rewards received by the environment. This formulation implicitly assumes that the expected payoff for each action is kept stationary by the environment through time. Nevertheless, in many real-world applications this assumption does not hold and the agent has to face a non-stationary environment, that is, with a changing reward distribution. Thus, we present a new MAB algorithm, named f-Discounted-Sliding-Window Thompson Sampling (f-dsw TS), for non-stationary environments, that is, when the data streaming is affected by concept drift. The f-dsw TS algorithm is based on Thompson Sampling (TS) and exploits a discount factor on the reward history and an arm-related sliding window to contrast concept drift in non-stationary environments. We investigate how to combine these two sources of information, namely the discount factor and the sliding window, by means of an aggregation function f(.). In particular, we proposed a pessimistic (f=min), an optimistic (f=max), as well as an averaged (f=mean) version of the f-dsw TS algorithm. A rich set of numerical experiments is performed to evaluate the f-dsw TS algorithm compared to both stationary and non-stationary state-of-the-art TS baselines. We exploited synthetic environments (both randomly-generated and controlled) to test the MAB algorithms under different types of drift, that is, sudden/abrupt, incremental, gradual and increasing/decreasing drift. Furthermore, we adapt four real-world active learning tasks to our framework—a prediction task on crimes in the city of Baltimore, a classification task on insects species, a recommendation task on local web-news, and a time-series analysis on microbial organisms in the tropical air ecosystem. The f-dsw TS approach emerges as the best performing MAB algorithm. At least one of the versions of f-dsw TS performs better than the baselines in synthetic environments, proving the robustness of f-dsw TS under different concept drift types. Moreover, the pessimistic version (f=min) results as the most effective in all real-world tasks.


2021 ◽  
Vol 68 (4) ◽  
pp. 1-25
Author(s):  
Thodoris Lykouris ◽  
Sergei Vassilvitskii

Traditional online algorithms encapsulate decision making under uncertainty, and give ways to hedge against all possible future events, while guaranteeing a nearly optimal solution, as compared to an offline optimum. On the other hand, machine learning algorithms are in the business of extrapolating patterns found in the data to predict the future, and usually come with strong guarantees on the expected generalization error. In this work, we develop a framework for augmenting online algorithms with a machine learned predictor to achieve competitive ratios that provably improve upon unconditional worst-case lower bounds when the predictor has low error. Our approach treats the predictor as a complete black box and is not dependent on its inner workings or the exact distribution of its errors. We apply this framework to the traditional caching problem—creating an eviction strategy for a cache of size k . We demonstrate that naively following the oracle’s recommendations may lead to very poor performance, even when the average error is quite low. Instead, we show how to modify the Marker algorithm to take into account the predictions and prove that this combined approach achieves a competitive ratio that both (i) decreases as the predictor’s error decreases and (ii) is always capped by O (log k ), which can be achieved without any assistance from the predictor. We complement our results with an empirical evaluation of our algorithm on real-world datasets and show that it performs well empirically even when using simple off-the-shelf predictions.


This article addresses the 3-dimensional mixed intuitionistic fuzzy assignment problems (3D-MIFAPs). In this article, firstly, the author formulates an assignment problem (AP) and assumes the parameters are in uncertainty with hesitation. Secondly, based on the nature of the parameter the author defines various types of solid assignment problem (SAP) in uncertain environment. Thirdly, to solve 3D-MIFAP the PSK method for finding an optimal solution of fully intuitionistic fuzzy assignment problem (FIFAP) is extended by the author. Fourthly, the author presents the proofs of the proposed theorems and corollary. Fifthly, the proposed approach is illustrated with three numerical examples and the optimal objective value of 3D-MIFAP is obtained in the form of intuitionistic fuzzy number and the solution is checked with MATLAB and their coding are also given by the author. Sixthly, the author presents the comparison results and their graphical representation, merits and demerits of the proposed and existing methods and finally the author presents conclusion and future research directions.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2190 ◽  
Author(s):  
Rafael Dawid ◽  
David McMillan ◽  
Matthew Revie

This paper for the first time captures the impact of uncertain maintenance action times on vessel routing for realistic offshore wind farm problems. A novel methodology is presented to incorporate uncertainties, e.g., on the expected maintenance duration, into the decision-making process. Users specify the extent to which these unknown elements impact the suggested vessel routing strategy. If uncertainties are present, the tool outputs multiple vessel routing policies with varying likelihoods of success. To demonstrate the tool’s capabilities, two case studies were presented. Firstly, simulations based on synthetic data illustrate that in a scenario with uncertainties, the cost-optimal solution is not necessarily the best choice for operators. Including uncertainties when calculating the vessel routing policy led to a 14% increase in the number of wind turbines maintained at the end of the day. Secondly, the tool was applied to a real-life scenario based on an offshore wind farm in collaboration with a United Kingdom (UK) operator. The results showed that the assignment of vessels to turbines generated by the tool matched the policy chosen by wind farm operators. By producing a range of policies for consideration, this tool provided operators with a structured and transparent method to assess trade-offs and justify decisions.


1998 ◽  
Vol 2 (1) ◽  
pp. 65-104 ◽  
Author(s):  
V. Adlakha ◽  
H. Arsham

In a fast changing global market, a manager is concerned with cost uncertainties of the cost matrix in transportation problems (TP) and assignment problems (AP).A time lag between the development and application of the model could cause cost parameters to assume different values when an optimal assignment is implemented. The manager might wish to determine the responsiveness of the current optimal solution to such uncertainties. A desirable tool is to construct a perturbation set (PS) of cost coeffcients which ensures the stability of an optimal solution under such uncertainties.The widely-used methods of solving the TP and AP are the stepping-stone (SS) method and the Hungarian method, respectively. Both methods fail to provide direct information to construct the needed PS. An added difficulty is that these problems might be highly pivotal degenerate. Therefore, the sensitivity results obtained via the available linear programming (LP) software might be misleading.We propose a unified pivotal solution algorithm for both TP and AP. The algorithm is free of pivotal degeneracy, which may cause cycling, and does not require any extra variables such as slack, surplus, or artificial variables used in dual and primal simplex. The algorithm permits higher-order assignment problems and side-constraints. Computational results comparing the proposed algorithm to the closely-related pivotal solution algorithm, the simplex, via the widely-used pack-age Lindo, are provided. The proposed algorithm has the advantage of being computationally practical, being easy to understand, and providing useful information for managers. The results empower the manager to assess and monitor various types of cost uncertainties encountered in real-life situations. Some illustrative numerical examples are also presented.


Author(s):  
Amit Kumar ◽  
Amarpreet Kaur

There are several methods, in literature, for finding the fuzzy optimal solution of fully fuzzy transportation problems (transportation problems in which all the parameters are represented by fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings, two new methods (based on fuzzy linear programming formulation and classical transportation methods) are proposed to find the fuzzy optimal solution of unbalanced fuzzy transportation problems by representing all the parameters as trapezoidal fuzzy numbers. The advantages of the proposed methods over existing methods are also discussed. To illustrate the proposed methods a fuzzy transportation problem (FTP) is solved by using the proposed methods and the obtained results are discussed. The proposed methods are easy to understand and to apply for finding the fuzzy optimal solution of fuzzy transportation problems occurring in real life situations.


Author(s):  
Tapan Kumar Singh ◽  
Kedar Nath Das

Most of the problems arise in real-life situation are complex natured. The level of the complexity increases due to the presence of highly non-linear constraints and increased number of decision variables. Finding the global solution for such complex problems is a greater challenge to the researchers. Fortunately, most of the time, bio-inspired techniques at least provide some near optimal solution, where the traditional methods become even completely handicapped. In this chapter, the behavioral study of a fly namely ‘Drosophila' has been presented. It is worth noting that, Drosophila uses it optimized behavior, particularly, when searches its food in the nature. Its behavior is modeled in to optimization and software is designed called Drosophila Food Search Optimization (DFO).The performance, DFO has been used to solve a wide range of both unconstrained and constrained benchmark function along with some of the real life problems. It is observed from the numerical results and analysis that DFO outperform the state of the art evolutionary techniques with faster convergence rate.


2018 ◽  
Vol 7 (4) ◽  
pp. 62-99 ◽  
Author(s):  
P.Senthil Kumar

This article proposes a method for solving intuitionistic fuzzy solid transportation problems (IFSTPs) in which only the transportation costs are represented in terms of intuitionistic fuzzy numbers (IFNs). The remaining parameters, namely: supply, demand and conveyance capacity, are all considered into crisp numbers. This type of STP is called a type-2 IFSTP. When solving the real life solid transportation problems (STPs) those tend to face the uncertainty state as well as hesitation due to many uncontrollable factors. To deal with uncertainty and hesitation many authors have suggested the intuitionistic fuzzy representation for the data. In this article, the author tried to categorise the STPs under the uncertain environment. He formulates the intuitionistic fuzzy STPs and utilizes the triangular intuitionistic fuzzy number (TIFN) to deal with uncertainty and hesitation. The PSK (P.Senthil Kumar) method for finding an intuitionistic fuzzy optimal solution for fully intuitionistic fuzzy transportation problem (FIFTP) is extended to solve the type-2 IFSTP and the optimal objective value of type-2 IFSTP is obtained in terms of TIFN. The main advantage of this method is that the optimal solution of type-2 IFSTP is obtained without using the basic feasible solution and the method of testing optimality. Moreover, the proposed method is computationally very simple and easy to understand. A case study is presented to illustrate the procedure of the proposed method.


2019 ◽  
Vol 25 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Sudhanshu Aggarwal

PurposeThe purpose of this paper is to present an efficient heuristic algorithm based on the 3-neighborhood approach. In this paper, search is made from sides of both feasible and infeasible regions to find near-optimal solutions.Design/methodology/approachThe algorithm performs a series of selection and exchange operations in 3-neighborhood to see whether this exchange yields still an improved feasible solution or converges to a near-optimal solution in which case the algorithm stops.FindingsThe proposed algorithm has been tested on complex system structures which have been widely used. The results show that this 3-neighborhood approach not only can obtain various known solutions but also is computationally efficient for various complex systems.Research limitations/implicationsIn general, the proposed heuristic is applicable to any coherent system with no restrictions on constraint functions; however, to enforce convergence, inferior solutions might be included only when they are not being too far from the optimum.Practical implicationsIt is observed that the proposed heuristic is reasonably proficient in terms of various measures of performance and computational time.Social implicationsReliability optimization is very important in real life systems such as computer and communication systems, telecommunications, automobile, nuclear, defense systems, etc. It is an important issue prior to real life systems design.Originality/valueThe utilization of 3-neighborhood strategy seems to be encouraging as it efficiently enforces the convergence to a near-optimal solution; indeed, it attains quality solutions in less computational time in comparison to other existing heuristic algorithms.


Sign in / Sign up

Export Citation Format

Share Document