scholarly journals First Hydroacoustic Assessment Of Fish Abundance And Distribution In The Shallow Sub-Basin Of Lake Titicaca

2020 ◽  
Vol 4 (2) ◽  
pp. 1-7
Author(s):  
Erick Loayza ◽  

For the last two decades, a rapid eutrophication process impacts Lake Titicaca, the largest tropical freshwater lake in South America and the main highest Great Lake. This is especially notorious in the Bolivian sector of its shallow Lago Menor sub-basin. Lago Menor is deteriorated by the combination of multiple contaminations (domestic, industrial and mining) from untreated wastewater discharged from the urban area of El Alto, indiscriminate overfishing, and climate change. These threats particularly affect the native Andean killifish genus Orestias, the ecology and dynamics of which require in-depth studies with non-invasive techniques.

2019 ◽  
Vol 19 (2) ◽  
pp. 105-111
Author(s):  
Nadia Shafei ◽  
Mohammad Saeed Hakhamaneshi ◽  
Massoud Houshmand ◽  
Siavash Gerayeshnejad ◽  
Fardin Fathi ◽  
...  

Background: Beta thalassemia is a common disorder with autosomal recessive inheritance. The most prenatal diagnostic methods are the invasive techniques that have the risk of miscarriage. Now the non-invasive methods will be gradually alternative for these invasive techniques. Objective: The aim of this study is to evaluate and compare the diagnostic value of two non-invasive diagnostic methods for fetal thalassemia using cell free fetal DNA (cff-DNA) and nucleated RBC (NRBC) in one sampling community. Methods: 10 ml of blood was taken in two k3EDTA tube from 32 pregnant women (mean of gestational age = 11 weeks), who themselves and their husbands had minor thalassemia. One tube was used to enrich NRBC and other was used for cff-DNA extraction. NRBCs were isolated by MACS method and immunohistochemistry; the genome of stained cells was amplified by multiple displacement amplification (MDA) procedure. These products were used as template in b-globin segments PCR. cff-DNA was extracted by THP method and 300 bp areas were recovered from the agarose gel as fetus DNA. These DNA were used as template in touch down PCR to amplify b-globin gen. The amplified b-globin segments were sequenced and the results compared with CVS resul. Results: The data showed that sensitivity and specificity of thalassemia diagnosis by NRBC were 100% and 92% respectively and sensitivity and specificity of thalassemia diagnosis by cff-DNA were 100% and 84% respectively. Conclusion: These methods with high sensitivity can be used as screening test but due to their lower specificity than CVS, they cannot be used as diagnostic test.


2020 ◽  
Vol 16 (2) ◽  
pp. 138-152
Author(s):  
Bingren Zhang ◽  
Chu Wang ◽  
Chanchan Shen ◽  
Wei Wang

Background: Responses to external emotional-stimuli or their transitions might help to elucidate the scientific background and assist the clinical management of psychiatric problems, but pure emotional-materials and their utilization at different levels of neurophysiological processing are few. Objective: We aimed to describe the responses at central and peripheral levels in healthy volunteers and psychiatric patients when facing external emotions and their transitions. Methods: Using pictures and sounds with pure emotions of Disgust, Erotica, Fear, Happiness, Neutral, and Sadness or their transitions as stimuli, we have developed a series of non-invasive techniques, i.e., the event-related potentials, functional magnetic resonance imaging, excitatory and inhibitory brainstem reflexes, and polygraph, to assess different levels of neurophysiological responses in different populations. Results: Sample outcomes on various conditions were specific and distinguishable at cortical to peripheral levels in bipolar I and II disorder patients compared to healthy volunteers. Conclusions: Methodologically, designs with these pure emotions and their transitions are applicable, and results per se are specifically interpretable in patients with emotion-related problems.


Author(s):  
Lonnie G. Thompson ◽  
Alan L. Kolata

Climate is a fundamental and independent variable of human existence. Given that 50 percent of the Earth’s surface and much of its population exist between 30oN and 30oS, paleoenvironmental research in the Earth’s tropical regions is vital to our understanding of the world’s current and past climate change. Most of the solar energy that drives the climate system is absorbed in these regions. Paleoclimate records reveal that tropical processes, such as variations in the El Niño-Southern Oscillation (ENSO), have affected the climate over much of the planet. Climatic variations, particularly in precipitation and temperature, play a critical role in the adaptations of agrarian cultures located in zones of environmental sensitivity, such as those of the coastal deserts, highlands, and altiplano of the Andean region. Paleoclimate records from the Quelccaya ice cap (5670 masl) in highland Peru that extend back ~1800 years show good correlation between precipitation and the rise and fall of pre-Hispanic civilizations in western Peru and Bolivia. Sediment cores extracted from Lake Titicaca provide independent evidence of this correspondence with particular reference to the history of the pre-Hispanic Tiwanaku state centered in the Andean altiplano. Here we explore, in particular, the impacts of climate change on the development and ultimate dissolution of this altiplano state.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yukiko Hirabayashi ◽  
Haireti Alifu ◽  
Dai Yamazaki ◽  
Yukiko Imada ◽  
Hideo Shiogama ◽  
...  

AbstractThe ongoing increases in anthropogenic radiative forcing have changed the global water cycle and are expected to lead to more intense precipitation extremes and associated floods. However, given the limitations of observations and model simulations, evidence of the impact of anthropogenic climate change on past extreme river discharge is scarce. Here, a large ensemble numerical simulation revealed that 64% (14 of 22 events) of floods analyzed during 2010-2013 were affected by anthropogenic climate change. Four flood events in Asia, Europe, and South America were enhanced within the 90% likelihood range. Of eight snow-induced floods analyzed, three were enhanced and four events were suppressed, indicating that the effects of climate change are more likely to be seen in the snow-induced floods. A global-scale analysis of flood frequency revealed that anthropogenic climate change enhanced the occurrence of floods during 2010-2013 in wide area of northern Eurasia, part of northwestern India, and central Africa, while suppressing the occurrence of floods in part of northeastern Eurasia, southern Africa, central to eastern North America and South America. Since the changes in the occurrence of flooding are the results of several hydrological processes, such as snow melt and changes in seasonal and extreme precipitation, and because a climate change signal is often not detectable from limited observation records, large ensemble discharge simulation provides insights into anthropogenic effects on past fluvial floods.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Andy Sombke ◽  
Carsten H. G. Müller

Abstract Background The jointed appendage is a key novelty in arthropod evolution and arthropod legs are known to vary enormously in relation to function. Among centipedes, the ultimate legs always are distinctly different from locomotory legs, and different centipede taxa evolved different structural and functional modifications. In Geophilomorpha (soil centipedes), ultimate legs do not participate in locomotion and were interpret to serve a sensory function. They can be sexually dimorphic and in some species, male ultimate legs notably appear “hairy”. It can be assumed that the high abundance of sensilla indicates a pronounced sensory function. This study seeks for assessing the sensory diversity, however, documents the surprising and unique case of an extensive glandular epithelium in the ultimate legs of three phylogenetically distant species. Results The tightly aggregated epidermal glands with stalked ducts – mistakenly thought to be sensilla – were scrutinized using a multimodal microscopic approach comprising histology as well as scanning and transmission electron microscopy in Haplophilus subterraneus. Hence, this is the first detailed account on centipede ultimate legs demonstrating an evolutionary transformation into a “secretory leg”. Additionally, we investigated sensory structures as well as anatomical features using microCT analysis. Contrary to its nomination as a tarsus, tarsus 1 possesses intrinsic musculature, which is an indication that this podomere might be a derivate of the tibia. Discussion The presence and identity of ultimate leg associated epidermal glands with stalked ducts is a new discovery for myriapods. A pronounced secretory as well as moderate sensory function in Haplophilus subterraneus can be concluded. The set of characters will improve future taxonomic studies, to test the hypotheses whether the presence of these specialized glands is a common feature in Geophilomorpha, and that tarsus 1 may be a derivate of the tibia. As the number of epidermal glands with stalked ducts is sexually dimorphic, their function might be connected to reproduction or a sex-specific defensive role. Our results, in particular the unexpected discovery of ‘glandular hairs’, may account for a striking example for how deceptive morphological descriptions of epidermal organs may be, if based on non-invasive techniques alone.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 189
Author(s):  
David Bamgboje ◽  
Iasonas Christoulakis ◽  
Ioannis Smanis ◽  
Gaurav Chavan ◽  
Rinkal Shah ◽  
...  

Diabetes mellitus (DM) is a chronic disease that must be carefully managed to prevent serious complications such as cardiovascular disease, retinopathy, nephropathy and neuropathy. Self-monitoring of blood glucose is a crucial tool for managing diabetes and, at present, all relevant procedures are invasive while they only provide periodic measurements. The pain and measurement intermittency associated with invasive techniques resulted in the exploration of painless, continuous, and non-invasive techniques of glucose measurement that would facilitate intensive management. The focus of this review paper is the existing solutions for continuous non-invasive glucose monitoring via contact lenses (CLs) and to carry out a detailed, qualitative, and comparative analysis to inform prospective researchers on viable pathways. Direct glucose monitoring via CLs is contingent on the detection of biomarkers present in the lacrimal fluid. In this review, emphasis is given on two types of sensors: a graphene-AgNW hybrid sensor and an amperometric sensor. Both sensors can detect the presence of glucose in the lacrimal fluid by using the enzyme, glucose oxidase. Additionally, this review covers fabrication procedures for CL biosensors. Ever since Google published the first glucose monitoring embedded system on a CL, CL biosensors have been considered state-of-the-art in the medical device research and development industry. The CL not only has to have a sensory system, it must also have an embedded integrated circuit (IC) for readout and wireless communication. Moreover, to retain mobility and ease of use of the CLs used for continuous glucose monitoring, the power supply to the solid-state IC on such CLs must be wireless. Currently, there are four methods of powering CLs: utilizing solar energy, via a biofuel cell, or by inductive or radiofrequency (RF) power. Although, there are many limitations associated with each method, the limitations common to all, are safety restrictions and CL size limitations. Bearing this in mind, RF power has received most of the attention in reported literature, whereas solar power has received the least attention in the literature. CLs seem a very promising target for cutting edge biotechnological applications of diagnostic, prognostic and therapeutic relevance.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Klara Retko ◽  
Maša Kavčič ◽  
Lea Legan ◽  
Polonca Ropret ◽  
Bojana Rogelj Škafar ◽  
...  

AbstractIn this study, a painted beehive panel from the collection of the Slovene Ethnographic Museum was examined with respect to its material composition with the aim to reveal the painting technique. Due to the state of degradation due to outdoor weathering (UV irradiation, rainfall, extreme temperature and humidity fluctuations), as well as past conservation interventions, the object represented a complex analytical challenge. We aimed for non-invasive techniques (FTIR in reflection mode, Raman spectroscopy and hyperspectral imaging in the range of 400–2500 nm); however, in order to explore paint layers, cross-sections were also analysed using Raman spectroscopy. FTIR spectroscopy in transmission mode and gas chromatography coupled to mass spectrometry were also used on sample fragments. Various original materials were identified such as pigments and binders. The surface coating applied during conservation interventions was also characterised. Additionally, organic compounds were found (oxalate, carboxylate), representing transformation products. The potential use of Prussian blue as a background paint layer is discussed.


The Condor ◽  
2021 ◽  
Author(s):  
Natália Stefanini Da Silveira ◽  
Maurício Humberto Vancine ◽  
Alex E Jahn ◽  
Marco Aurélio Pizo ◽  
Thadeu Sobral-Souza

Abstract Bird migration patterns are changing worldwide due to current global climate changes. Addressing the effects of such changes on the migration of birds in South America is particularly challenging because the details about how birds migrate within the Neotropics are generally not well understood. Here, we aim to infer the potential effects of future climate change on breeding and wintering areas of birds that migrate within South America by estimating the size and elevations of their future breeding and wintering areas. We used occurrence data from species distribution databases (VertNet and GBIF), published studies, and eBird for 3 thrush species (Turdidae; Turdus nigriceps, T. subalaris, and T. flavipes) that breed and winter in different regions of South America and built ecological niche models using ensemble forecasting approaches to infer current and future potential distributions throughout the breeding and wintering periods of each species. Our findings point to future shifts in wintering and breeding areas, mainly through elevational and longitudinal changes. Future breeding areas for T. nigriceps, which migrates along the Andes Mountains, will be displaced to the west, while breeding displacements to the east are expected for the other 2 species. An overall loss in the size of future wintering areas was also supported for 2 of the species, especially for T. subalaris, but an increase is anticipated for T. flavipes. Our results suggest that future climate change in South America will require that species shift their breeding and wintering areas to higher elevations in addition to changes in their latitudes and longitude. Our findings are the first to show how future climate change may affect migratory birds in South America throughout the year and suggest that even closely related migratory birds in South America will be affected in different ways, depending on the regions where they breed and overwinter.


Sign in / Sign up

Export Citation Format

Share Document