INTENSIFICATION OF GRINDING PROCESS IN MILLS OF MULTIPLE IMPACT ACTION

2017 ◽  
Vol 11 (24) ◽  
pp. 154-161
Author(s):  
V.R. Vinokurov ◽  
◽  
E.S. Lvov ◽  
1988 ◽  
Vol 54 (7) ◽  
pp. 1298-1303
Author(s):  
Toshikatsu NAKAJIMA ◽  
Yoshiyuki UNO ◽  
Takanori FUJIWARA ◽  
Atsunori IKEJIRI ◽  
Kazuhito OHASHI

One of efficiency indicators of grain grinders is grain granulometric composition. The basis of mixed fodder is crushed grain, the particles of which must have a leveled granulometric composition for subsequent mixing and obtaining a high-quality feed mixture. In agricultural production, hammer crushers are widely used, in which the destruction of grain occurs due to the impact of a hinged hammer. The main disadvantage of these crushers is that not the entire surface of the hammers is involved in grinding, thus reduces grinding process efficiency. A slightly different principle of material destruction is laid down in the basis of the proposed design of the shock-centrifugal grinder. Main work is performed by flat impact elements located on the rotor, which serve to accelerate crushed particles with subsequent impact of them on the bump elements. An important step in the design of new constructions of shock-centrifugal grinders is to determine size and location of the impact elements on the rotor, without which the grinding process is not possible. In the calculation method presented, the dependencies for determining the velocities and angles of a single particle flight from the surface of a flat impact element for its specified dimensions are proposed. Two variants of an impact element location on the rotor are considered and analyzed: radial and at an angle in the direction of rotor rotation. As a result of research carried out, it is noted that in the case of inclined position of an impact element on the rotor an increase in flight speed and flight angles change in crushed particles, which gives the opportunity to have a positive effect on grinding process.


Author(s):  
Bernhard Hommel

AbstractCommonsense and theorizing about action control agree in assuming that human behavior is (mainly) driven by goals, but no mechanistic theory of what goals are, where they come from, and how they impact action selection is available. Here I develop such a theory that is based on the assumption that GOALs guide Intentional Actions THrough criteria (GOALIATH). The theory is intended to be minimalist and parsimonious with respect to its assumptions, as transparent and mechanistic as possible, and it is based on representational assumptions provided by the Theory of Event Coding (TEC). It holds that goal-directed behavior is guided by selection criteria that activate and create competition between event files that contain action-effect codes matching one or more of the criteria—a competition that eventually settles into a solution favoring the best-matching event file. The criteria are associated with various sources, including biological drives, acquired needs (e.g., of achievement, power, or affiliation), and short-term, sometimes arbitrary, instructed aims. Action selection is, thus, a compromise that tries to satisfy various criteria related to different driving forces, which are also likely to vary in strength over time. Hence, what looks like goal-directed action emerges from, and represents an attempt to satisfy multiple constraints with different origins, purposes, operational characteristics, and timescales—which among other things does not guarantee a high degree of coherence or rationality of the eventual outcome. GOALIATH calls for a radical break with conventional theorizing about the control of goal-directed behavior, as it among other things questions existing cognitive-control theories and dual-route models of action control.


Author(s):  
Guilherme Bressan Moretti ◽  
Benício Nacif Ávila ◽  
José Claudio Lopes ◽  
Douglas Lyra de Moraes ◽  
Mateus Vinicius Garcia ◽  
...  

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 32
Author(s):  
Waleed H. Hassoon ◽  
Dariusz Dziki ◽  
Antoni Miś ◽  
Beata Biernacka

The objective of this study was to determine the grinding characteristics of wheat with a low moisture content. Two kinds of wheat—soft spelt wheat and hard Khorasan wheat—were dried at 45 °C to reduce the moisture content from 12% to 5% (wet basis). Air drying at 45 °C and storage in a climatic chamber (45 °C, 10% relative humidity) were the methods used for grain dehydration. The grinding process was carried out using a knife mill. After grinding, the particle size distribution, average particle size and grinding energy indices were determined. In addition, the dough mixing properties of wholemeal flour dough were studied using a farinograph. It was observed that decreasing the moisture content in wheat grains from 12% to 5% made the grinding process more effective. As a result, the average particle size of the ground material was decreased. This effect was found in both soft and hard wheat. Importantly, lowering the grain moisture led to about a twofold decrease in the required grinding energy. Moreover, the flour obtained from the dried grains showed higher water absorption and higher dough stability during mixing. However, the method of grain dehydration had little or no effect on the results of the grinding process or dough properties.


Sign in / Sign up

Export Citation Format

Share Document