scholarly journals Harmonics Analysis of Input Current of 3-Phase PWM Rectifier

Author(s):  
Alfin Prima Adjie ◽  
Muhammad Imran Hamid

Rectifier is a non-linier load that causes harmonic distortion in the power system. Pulse-width modulation (PWM) method is an effective method in pressing the magnitude of harmonics in a rectifier application,  it provides an almost sinusoidal input current. However, the variation of loads that supplied by a rectifier cause the harmonics that arise can still beyond the applicable standard. The amount of harmonics in the operating range of a rectifier need to be identified to determine the filter on the input side. In this research article, 3-phase PWM rectifier was designed with hysteresis current control technique using PSCAD software simulation. Harmonic compensation was carried out by applying an active filter based on P-Q theory to reduce the harmonic distortion that occurs in the input current, thus giving a low total harmonic distortion (THD) value. Based on the simulation, 3-phase PWM rectifier operation starting at a power level of 150 kW, giving a THD value above 5-10% by the increasing the amount of  load supplied by the rectifier. The application of active filter based on the P-Q theory is able to compensate harmonics in the input current wave with a THD value below 5% in the rectifier operating range.

Author(s):  
Adel Elgammal ◽  
Curtis Boodoo

This article offers a clear and realistic design for an active power filter to increase reliability and power quality of the photovoltaic charging system and a high-penetration electric vehicle distribution system. The MOPSO algorithm is used as the basis for problems with optimization and filter tuning. A typical regular load curve is used to model the warped power grid over a 24-hour cycle to estimate the total harmonic distortion (THD). For structures with high penetration of electric cars, the probability of minimizing THD (for example to five percent) is explored via optimum capacity active shunt filters and shunt capacitors. To maximize general performance of the charging system, the switching systems are re-scheduled. Moreover, to increase the current control accuracy of shunt active filter, the fuzzy logic controller is utilized. The major drawback to new system is that it would have unrestricted billing for entire day to cope with voltage interruption. In MATLAB / SIMULINK, detailed machine setup and control algorithm experiments are simulated. The simulation findings confirm the efficiency and viability of projected shunt active filter to enhance voltage profile and track power performance of photovoltaic charging system.


Author(s):  
Peethala Rajiv Roy ◽  
P. Parthiban ◽  
B. Chitti Babu

Abstract This paper deals with implementation of a single-phase three level converter system under low voltage condition. The frequency of the switches is made constant and involves change in ${t_{on}}$ and ${t_{off}}$ duration. For this condition the pulse width modulation control scheme for a single phase three level rectifier is developed to improve the power quality. The hysteresis current control technique is adopted to bring forth three-level PWM on the dc side of the bridge rectifier and to achieve high power factor and low harmonic distortion. Based on the proposed control scheme, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage. By using three-level voltage pattern the blocking voltage of each power device is clamped to half of the dc link voltage. The simulation and experimental results of 20W converter under low input voltage condition are shown to verify the circuit performance. Open loop simulation and hardware tests are implemented by applying a low voltage of 15 V(rms) on the input side.


2019 ◽  
Vol 3 (1) ◽  
pp. 21-27
Author(s):  
Francis Mulolani ◽  
Francis Kafata ◽  
Esau Zulu

This paper presents the design and closed-loop current control of a grid connected seven-level, 3-phase diode-clamped multilevel inverter for Photovoltaic (PV) applications. The proposed closed loop current control technique is based on the voltage-oriented proportional integral (PI) controller theory. The modulation technique used is level-shifted-carrier sinusoidal pulse width modulation (SPWM). The gain values of PI controller were selected to achieve good current quality and dynamic response. Grid synchronization was achieved by using a synchronous-reference frame phase-locked loop (SRF-PLL). Matlab/Simulink was used for the control system design and simulation. The simulation results show that a 1.34% total harmonic distortion (THD) of the output current was achieved which is within the allowable current distortion limits by international standards. The stability of the system was analyzed using pole-zero mapping and root locus.


2020 ◽  
Vol 184 ◽  
pp. 01041
Author(s):  
Krishna S. Patel ◽  
Vijay H. Makwana

This paper presents the modified grid side converter control (GSC) technique which enable the GSC to work as a shunt active filter to mitigate the grid current harmonics produced by the nonlinear load, as well as to transfer power from the grid to the rotor of doubly fed induction generator (DFIG) or vice versa. The main contribution of this proposed technique is an addition of a shunt active filter with space vector pulse width modulation (SVPWM) controller in GSC control itself in order to achieve a better grid current %THD profile, and simultaneously to control active power for variable wind speed. The reactive power supply to the DFIG and extraction of maximum power is achieved using RSC. The comparison of the modified GSC control technique using hysteresis current control (HCC), and SVPWM controller used to mitigate the harmonics is presented with different wind speeds. The proposed modified GSC control technique is simulated for grid-connected 2.6 MW DFIG based wind energy conversion system (WECS) in MATLAB Simulink environment.


Author(s):  
Linda Hassaine ◽  
Mohamed Rida Bengourina

The power quality injected into the grid and the performance of the converter system depend on the quality of the inverter current control. This paper proposes a design and control technique for a photovoltaic inverter connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal output current with a grid voltage and control a power factor. The current injected must be sinusoidal with reduced harmonic distortion. The connected PV system is based on H-Bridge inverter controlled by bipolar PWM Switching. The current control technique and functional structure of this system are presented and simulated. Detailed analysis, Simulations results of output voltage and current waveform demonstrate the contribution of this approach to determinate the suitable control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on an Xilinx FPGA and it has been validated with experimental results. As a result, the proposed inverter implementation is simple, and it becomes an attractive solution for low power grid connected applications.


Author(s):  
Bindu K V ◽  
B Justus Rabi

In this paper, the disturbances in power system due to low quality of power are discussed and a current injection method to maintain the sinusoidal input current which will reduce the total current harmonic distortion (THD) as well as improve the power factor nearer to unity is proposed. The proposed method makes use of a novel controlled diode rectifier which involves the use of bidirectional switches across the front-end rectifier and the operation of the converter is fully analyzed. The main feature of the topology is low cost, small size, high efficiency and simplicity, and is excellent for retrofitting front-end rectifier of existing ac drives, UPS etc. A novel strategy implementing reference compensation current depending on the load harmonics and a control algorithm for three-phase three-level unity PF rectifier which draws high quality sinusoidal supply currents and maintains good dc link- voltage regulation under wide load variation. The proposed technique can be applied as a retrofit to a variety of existing thyristor converters which uses three bidirectional switches operating at low frequency and a half-bridge inverter operating at high frequency .The total power delivered to the load is processed by the injection network, the proposed converter offers high efficiency and not only high power factor but also the Total Harmonic Distortion is reduced. Theoretical analysis is verified by digital simulation and a hardware proto type module is implemented in order to confirm the feasibility of the proposed system. This scheme in general is suitable for the common variable medium-to high-power level DC load applications.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 545
Author(s):  
R Sriranjani ◽  
S Jayalalitha

This paper deals with the harmonic mitigation and reactive power compensation using Shunt Active filter. The performance of the Shunt active filter depends on the design and current control technique for generating a reference current. The design of the filter involves the iterative procedure for choosing the filter components so that it compensates the harmonics and reactive power for maximum load condition. The current controller method adopted for indirect current control technique where the reference signal is similar to the supply current signal. The Adaptive filter used in current controller mitigates harmonics and reactive power and voltage control loop of SAF balancing the active power between the load and supply unit. The learning rate is fixed by repeated simulation. The SAF active filter is tested in four load condition ie., nonlinear load(37% Total Harmonic Distortion(THD)),highly nonlinear load(>100% THD), linear load(<8% THD, power factor(pf) <0.5) and both nonlinear and linear load(37% THD and 0.7 pf). The study is carried out in MATLAB Simulink and the results are presented.  


Author(s):  
Fanyang Li ◽  
Tao Yang

A driving amplifier capable of operating at a minimum voltage is proposed, aiming to subdue the distortion effect caused by large amplitude driving at the hearing aid loudspeaker. Since the linearity of a cascode amplifier usually degrades with the reduced supply voltage, a three-stage cascade amplifier having a parallel cascade second stage, and a folded cascade Class-AB output current control in place are designed. With such an arrangement, the open loop gain should still be maintained at a sufficiently high level even in the presence of increased output amplitude. Also, the minimum supply voltage required can then be reduced to merely [Formula: see text]. Fabricated on a 0.18[Formula: see text][Formula: see text]m complementary metal oxide semiconductor (CMOS) process, the proposed amplifier achieves [Formula: see text][Formula: see text]dB total harmonic distortion [Formula: see text] with a loudspeaker load of 100[Formula: see text]ohm while operating from a 1.2[Formula: see text]V supply and being subject to a 1[Formula: see text]kHz sinusoidal input.


Sign in / Sign up

Export Citation Format

Share Document