scholarly journals Cytotoxicity evaluation and physicochemical properties of collagen isolated from silver carp tails as potential biomaterial

2021 ◽  
Vol 26 (4) ◽  
pp. 2808-2817
Author(s):  
PETRUTA PREDA ◽  
ANA-MARIA ENCIU ◽  
MARIOARA AVRAM ◽  
CRISTIANA TANASE ◽  
MARIA DUDAU ◽  
...  

Collagen is widely used as a biomaterial in the pharmaceutical and cosmetic industries, in the production of hydrogels, wound dressings, bioactive nano/microfibers, controlled drug delivery systems, etc. The collagen isolated from the aquatic source has a higher biological activity and low risk of transmitting genetic diseases. In recent years the sustainable socio-economic and environmental principles promote the full use of natural resources. Thus, fish collagen extracted from fish by-products (skin, scales, bones and fins) can be valorized as a new collagen alternative source. In this work the enzymatic hydrolysis with pepsin of collagen isolation from silver carp (Hypophthalmichthys molitrix) tails fish has been investigated. We successfully isolated type I collagen with 90-95% purity as determined by FTIR, UV-Vis, EDX and SDS-PAGE analyses. The cytotoxicity of obtained collagen was evaluating by MTS assays.

2011 ◽  
Vol 236-238 ◽  
pp. 2926-2934 ◽  
Author(s):  
Li Li Chen ◽  
Li Zhao ◽  
Hua Liu ◽  
Run Feng Wu

Pepsin-soluble collagen (PSC) was successfully extracted from the skin of Amiurus nebulosus. The skin of Amiurus nebulosus was immersed in 0.3 mol/L acetic acid (1: 20, m: V) for 6 h at 37°C, while pepsin was added, at a level of 5000U/g dosage of defatted skin. The maximal yield of the collagen was 97.44%, which was higher than that of acid-soluble collagen (ASC) at 62.05%. Some properties of pepsin-soluble collagens from the skin of Amiurus nebulosus were characterized. Amino acid composition and SDS-PAGE suggested that the collagen might be classified as type I collagen. Moreover, FTIR investigations showed the existence of helical arrangements in PSC of Amiurus nebulosus skin of collagen. There is a possibility to use Amiurus nebulosus skin collagen as an alternative source of collagen for industrial purposes and subsequently it may maximize the economical value of the fish.


Biotecnia ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 109-116
Author(s):  
Celia Olivia García-Sifuentes ◽  
Julio Cesar Zamorano-Apodaca ◽  
Marcel Martinez-Porchas ◽  
Susana Maria Scheuren-Acevedo ◽  
Miguel Angel Mazorra-Manzano

Fish by-products consisting of skin, bones, or scales are collagen sources. Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) mixed by-products derived from different fish species were extracted and evaluated. The properties evaluated for both collagens were chemical composition, amino acid- and SDS-PAGE- protein profiles, Fourier transform infrared spectroscopy (FTIR), denaturation temperature (Tmax), enthalpy (ΔH), and solubility. The ASC and PSC registered a protein content of 48.56 and 38.80 %, respectively. From the total amino acids detected, hydroxyproline accounted for 7 % and 6 % for ASC and PSC, respectively. The electrophoretic profile showed the presence of the type I collagen bands (α1, α2, β, and γ), whereas FTIR spectrum showed the presence of diverse collagen functional groups (Amide A, B, I, II, and III) for both extracted types, and demonstrated that the extraction process did not affect the collagen´s triple-helical structure. The Tmax of ASC and PSC were 38.27 and 38.07° C, respectively, whereas ΔH were 0.64 and 0.33 J g-1. The lowest solubility was registered at pH 5 for ASC and pH 9 for PSC. The caractheristics of the collagen extracted, indicated that a mixture of by-products from different species could be an alternative for their reutilization by the local markets.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 178 ◽  
Author(s):  
Baosheng Ge ◽  
Haonan Wang ◽  
Jie Li ◽  
Hengheng Liu ◽  
Yonghao Yin ◽  
...  

Collagen plays an important role in the formation of extracellular matrix (ECM) and development/migration of cells and tissues. Here we report the preparation of collagen and collagen hydrogel from the skin of tilapia and an evaluation of their potential as a wound dressing for the treatment of refractory wounds. The acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted and characterized using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), differential scanning calorimetry (DSC), circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) analysis. Both ASC and PSC belong to type I collagen and have a complete triple helix structure, but PSC shows lower molecular weight and thermal stability, and has the inherent low antigenicity. Therefore, PSC was selected to prepare biomedical hydrogels using its self-aggregating properties. Rheological characterization showed that the mechanical strength of the hydrogels increased as the PSC content increased. Scanning electron microscope (SEM) analysis indicated that hydrogels could form a regular network structure at a suitable PSC content. Cytotoxicity experiments confirmed that hydrogels with different PSC content showed no significant toxicity to fibroblasts. Skin repair experiments and pathological analysis showed that the collagen hydrogels wound dressing could significantly accelerate the healing of deep second-degree burn wounds and the generation of new skin appendages, which can be used for treatment of various refractory wounds.


Parasitology ◽  
2004 ◽  
Vol 128 (5) ◽  
pp. 541-548 ◽  
Author(s):  
A. PARAMÁ ◽  
R. IGLESIAS ◽  
M. F. ÁLVAREZ ◽  
J. LEIRO ◽  
F. M. UBEIRA ◽  
...  

This study investigated protease activities in a crude extract andin vitroexcretion/secretion (E/S) products ofPhilasterides dicentrarchi, a ciliate fish parasite causing economically significant losses in aquaculture. Gelatin/SDS–PAGE analysis (pH 4, reducing conditions) detected 7 bands with gelatinolytic activity (approximate molecular weights 30–63 kDa) in the crude extract. The banding pattern observed in analysis of E/S products was practically identical, except for 1 low-molecular-weight band detected in the crude extract but not in the E/S products. In assays with synthetic peptidep-nitroanilide substrates, the crude extract hydrolysed substrates characteristic of cysteine proteases, namely Z-Arg-Arg pNA, Bz-Phe-Val-Arg pNA and Z-Phe-Arg pNA. These activities were strongly inhibited by the cysteine protease inhibitor E-64 and by Ac-Leu-Val-Lys aldehyde, a potent inhibitor of cysteine proteases of the cathepsin B protease subfamily. The proteases present in the crude extract degraded both type-I collagen and haemoglobinin vitro, consistent with roles in tissue invasion and nutrition respectively. Again, E-64 completely (collagen) or markedly (haemoglobin) inhibited this degradation. Finally, the histolytic activity of the ciliate in turbot fibroblast monolayers was strongly reduced in the presence of E-64, confirming the importance of secreted cysteine proteinases in the biology ofPhilasterides dicentrarchi.


2018 ◽  
Vol 17 (2) ◽  
pp. 206-213
Author(s):  
Wang Yan-Bo ◽  
Li Xiao-Hui ◽  
Zhou Jin-Ru ◽  
Zhang Yan ◽  
Ma Ai-Jin ◽  
...  

Type I collagen was described as a major allergen in fish. The purpose of this study was to screen and identify the linear IgE epitopes of type I collagen α1 and α2 subunits in rainbow trout. Five bioinformatics tools were used to predict the potential epitopes and the resultant epitopes were confirmed by LAD2 cells degranulation assay with sera from fish allergic patients. As the result, 10 peptides of α1 and α2 subunits were predicted, respectively, and these peptides were assembled by solid-phase synthesis. 14 epitopes were identified by LAD2 cells degranulation assay, among which, peptide 2, 5–7 were identified as linear epitope of α1 and peptide 11–20 were identified as linear epitope of α2. Moreover, for α1 and α2 subunits, the similarity of sequences was greater than 79%, suggesting the cross-reactivity of fish collagen. The findings of this study provided a strong support for further research of reduction of the collagen allergenicity.


Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 471 ◽  
Author(s):  
Tharindu R.L. Senadheera ◽  
Deepika Dave ◽  
Fereidoon Shahidi

Collagen is the major fibrillar protein in most living organisms. Among the different types of collagen, type I collagen is the most abundant one in tissues of marine invertebrates. Due to the health-related risk factors and religious constraints, use of mammalian derived collagen has been limited. This triggers the search for alternative sources of collagen for both food and non-food applications. In this regard, numerous studies have been conducted on maximizing the utilization of seafood processing by-products and address the need for collagen. However, less attention has been given to marine invertebrates and their by-products. The present review has focused on identifying sea cucumber as a potential source of collagen and discusses the general scope of collagen extraction, isolation, characterization, and physicochemical properties along with opportunities and challenges for utilizing marine-derived collagen.


2013 ◽  
Vol 587 ◽  
pp. 185-190 ◽  
Author(s):  
Alina Sionkowska ◽  
Justyna Kozlowska

Collagen for biomedical applications is mainly isolated from animal tissues (bovine or porcine skin and bovine or equine Achilles tendons). Type I collagen has been also extracted from skin, bone, fins and scales of fresh water and marine fishes. Fish scales are composed of collagen covered with calcium salts. In the present study we report the preparation of collagen from fish scales for potential cosmetic, pharmaceutical and implant applications. In our laboratory collagen was isolated from scales ofEsox lucius. It was the first time that this species were used as sources of collagen. Extraction of collagen from fish scales was done in two steps. In the first step, fish scales were demineralized using EDTA. Energy dispersive X-ray analysis of demineralized scale was carried out for quantitative estimation of inorganic content. Then, demineralized fish scales were dissolved in acetic acid. Collagen isolated fromEsox Luciusmay serve as an attractive and safe source of collagen for biomedical and pharmaceutical applications. Fish collagen can be processed in sheet, sponges foams, injectable viscous solution, and dispersions.


Sign in / Sign up

Export Citation Format

Share Document