scholarly journals Kinematic Approximation of Position Accuracy Achieved Using Optical Observations of Distant Asteroids

2019 ◽  
Vol 56 (5) ◽  
pp. 1383-1392 ◽  
Author(s):  
Stephen B. Broschart ◽  
Nicholas Bradley ◽  
Shyam Bhaskaran
Author(s):  
L. -M. Peng ◽  
M. J. Whelan

In recent years there has been a trend in the structure determination of reconstructed surfaces to use high energy electron diffraction techniques, and to employ a kinematic approximation in analyzing the intensities of surface superlattice reflections. Experimentally this is motivated by the great success of the determination of the dimer adatom stacking fault (DAS) structure of the Si(111) 7 × 7 reconstructed surface.While in the case of transmission electron diffraction (TED) the validity of the kinematic approximation has been examined by using multislice calculations for Si and certain incident beam directions, far less has been done in the reflection high energy electron diffraction (RHEED) case. In this paper we aim to provide a thorough Bloch wave analysis of the various diffraction processes involved, and to set criteria on the validity for the kinematic analysis of the intensities of the surface superlattice reflections.The validity of the kinematic analysis, being common to both the TED and RHEED case, relies primarily on two underlying observations, namely (l)the surface superlattice scattering in the selvedge is kinematically dominating, and (2)the superlattice diffracted beams are uncoupled from the fundamental diffracted beams within the bulk.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


1998 ◽  
Vol 188 ◽  
pp. 388-389
Author(s):  
A. Kubota ◽  
K. Makishima ◽  
T. Dotani ◽  
H. Inoue ◽  
K. Mitsuda ◽  
...  

About 10 X-ray binaries in our Galaxy and LMC/SMC are considered to contain black hole candidates (BHCs). Among these objects, Cyg X-1 was identified as the first BHC, and it has led BHCs for more than 25 years(Oda 1977, Liang and Nolan 1984). It is a binary system composed of normal blue supergiant star and the X-ray emitting compact object. The orbital kinematics derived from optical observations indicates that the compact object is heavier than ~ 4.8 M⊙ (Herrero 1995), which well exceeds the upper limit mass for a neutron star(Kalogora 1996), where we assume the system consists of only two bodies. This has been the basis for BHC of Cyg X-1.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3955
Author(s):  
Jung-Cheng Yang ◽  
Chun-Jung Lin ◽  
Bing-Yuan You ◽  
Yin-Long Yan ◽  
Teng-Hu Cheng

Most UAVs rely on GPS for localization in an outdoor environment. However, in GPS-denied environment, other sources of localization are required for UAVs to conduct feedback control and navigation. LiDAR has been used for indoor localization, but the sampling rate is usually too low for feedback control of UAVs. To compensate this drawback, IMU sensors are usually fused to generate high-frequency odometry, with only few extra computation resources. To achieve this goal, a real-time LiDAR inertial odometer system (RTLIO) is developed in this work to generate high-precision and high-frequency odometry for the feedback control of UAVs in an indoor environment, and this is achieved by solving cost functions that consist of the LiDAR and IMU residuals. Compared to the traditional LIO approach, the initialization process of the developed RTLIO can be achieved, even when the device is stationary. To further reduce the accumulated pose errors, loop closure and pose-graph optimization are also developed in RTLIO. To demonstrate the efficacy of the developed RTLIO, experiments with long-range trajectory are conducted, and the results indicate that the RTLIO can outperform LIO with a smaller drift. Experiments with odometry benchmark dataset (i.e., KITTI) are also conducted to compare the performance with other methods, and the results show that the RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time delay and greater position accuracy.


1996 ◽  
Vol 171 ◽  
pp. 435-435
Author(s):  
S.A. Pustilnik ◽  
V.A. Lipovetsky ◽  
J.-M. Martin ◽  
T.X. Thuan

We present the analysis of a new set of radio and optical observations of a large sample of Byurakan Blue Compact Galaxies. HI spectra were obtained with the Nançay 300-m and Green Bank 43-m radio telescopes. CCD-images were taken with the KPNO 0.9-m and Whipple Observatory 1.2-m telescopes. Dark Matter (DM) to luminous mass ratios in these BCGs were found to vary from about less than 0.5 up to 14. Recent data taken from the literature indicate this same range. This result has important consequences on models of dwarf galaxy formation, indicating possibly different formation mechanisms. The standard CDM model of dwarfs formation requires large DM halos. However the formation of dwarfs as tidal debris resulting from strong interactions of massive spirals leads naturally to dwarfs with low content of DM. On Fig.1 we show DM to luminous mass ratio versus rotational velocity for our BCGs and some other galaxies.


2019 ◽  
Vol 28 (1) ◽  
pp. 180-190
Author(s):  
Ireneusz Wlodarczyk

AbstractWe computed the impact solutions of the potentially dangerous Near Earth Asteroid (NEA) 2001 BB16 based on 47 optical observations from January 20.08316 UTC, 2001, through February 09.15740 UTC, 2016, and one radar observation from January 19.90347 UTC, 2016. We used two methods to sample the starting Line of Variation (LOV). First method, called thereafter LOV1, with the uniform sampling of the LOV parameter, out to LOV = 5 computing 3000 virtual asteroids (VAs) on both sides of the LOV, which gives 6001 VAs and propagated their orbits to JD2525000.5 TDT=February 12, 2201. We computed the non-gravitational parameterA2=(34.55±7.38)·10–14 au/d2 for nominal orbit of 2001 BB16 and possible impacts with the Earth until 2201. For potential impact in 2195 we find A2=20.0·10−14 au/d2. With a positive value of A2, 2001 BB16 can be prograde rotator. Moreover, we computed Lyapunov Time (LT) for 2001 BB16, which for all VAs, has a mean value of about 25 y. We showed that impact solutions, including the calculated probability of a possible collision of a 2001 BB16 asteroid with the Earth depends on how to calculate and take into account the appropriate gravitational model, including the number of perturbing massive asteroids. In some complicated cases, it may depend also on the number of clones calculated for a given sigma LOV1. The second method of computing the impact solutions, called thereafter LOV2, is based on a non-uniformly sampling of the LOV. We showed that different methods of sampling the LOV can give different impact solutions, but all computed dates of possible impacts of the asteroid 2001 BB16 with the Earth occur in accordance at the end of the 22nd century.


Sign in / Sign up

Export Citation Format

Share Document