Evaluation of low cost manufacturing technologies for large scale composite ship structures

Author(s):  
Loc Nguyen ◽  
Thomas Juska ◽  
J. Mayes ◽  
Loc Nguyen ◽  
Thomas Juska ◽  
...  
Author(s):  
Marco Vinicio Alban ◽  
Haechang Lee ◽  
Hanul Moon ◽  
Seunghyup Yoo

Abstract Thin dry electrodes are promising components in wearable healthcare devices. Assessing the condition of the human body by monitoring biopotentials facilitates the early diagnosis of diseases as well as their prevention, treatment, and therapy. Existing clinical-use electrodes have limited wearable-device usage because they use gels, require preparation steps, and are uncomfortable to wear. While dry electrodes can improve these issues and have demonstrated performance on par with gel-based electrodes, providing advantages in mobile and wearable applications; the materials and fabrication methods used are not yet at the level of disposable gel electrodes for low-cost mass manufacturing and wide adoption. Here, a low-cost manufacturing process for thin dry electrodes with a conductive micro-pyramidal array is presented for large-scale on-skin wearable applications. The electrode is fabricated using micromolding techniques in conjunction with solution processes in order to guarantee ease of fabrication, high device yield, and the possibility of mass production compatible with current semiconductor production processes. Fabricated using a conductive paste and an epoxy resin that are both biocompatible, the developed micro-pyramidal array electrode operates in a conformal, non-invasive manner, with low skin irritation, which ensures improved comfort for brief or extended use. The operation of the developed electrode was examined by analyzing electrode-skin-electrode impedance, electroencephalography, electrocardiography, and electromyography signals and comparing them with those measured simultaneously using gel electrodes.


2002 ◽  
Vol 17 (10) ◽  
pp. 2484-2488 ◽  
Author(s):  
Travis L. Brown ◽  
Srinivasan Swaminathan ◽  
Srinivasan Chandrasekar ◽  
W. Dale Compton ◽  
Alexander H. King ◽  
...  

In spite of their interesting properties, nanostructured materials have found limited uses because of the cost of preparation and the limited range of materials that can be synthesized. It has been shown that most of these limitations can be overcome by subjecting a material to large-scale deformation, as occurs during common machining operations. The chips produced during lathe machining of a variety of pure metals, steels, and other alloys are shown to be nanostructured with grain (crystal) sizes between 100 and 800 nm. The hardness of the chips is found to be significantly greater than that of the bulk material.


1994 ◽  
Vol 7 (2-5) ◽  
pp. 475-494 ◽  
Author(s):  
Milton O. Critchfield ◽  
Thomas D. Judy ◽  
Alan D. Kurzweil

2000 ◽  
Author(s):  
Roger M. Crane

Abstract The U. S. Navy has a long-standing history of ship design using metals. With the improvements in weapon systems, it is becoming increasingly critical to design ship structures not only to satisfy the structural loading but also to exhibit additional multifunctional properties. This is becoming evident with structures such as the Advanced Enclosed Mast Sensor System, AEM/S, which was installed on the USS Radford. This structure was designed to house radar systems and allow the passage of certain radar frequencies through the structure while simultaneously not allowing the penetration of radar at other frequencies. In addition, the structure was designed to reduce the ship’s detectability. This paper will present a summary of the large-scale composite manufacturing that is being considered for Naval Structures. These structures are being manufactured using low-cost manufacturing techniques and are incorporating multifunctional characteristics in addition to meeting the structural requirement of the application. This paper will provide a historical discussion on the use of composite applications in the surface fleet.


2020 ◽  
pp. 568-802
Author(s):  
Stephen R. Forrest

This chapter introduces the major concepts governing the operation of organic photoconductors, photodiodes, and solar cells. Quantum efficiency, gain, noise, bandwidth, and the trade-offs between these parameters are discussed. Organic light detectors are used in sensing and communications, although the predominant interest is in solar cells. The unique properties of organics, including flexibility and conformability, also make them useful in applications such as position-sensitive detection and in imaging, as considered in this chapter. Methods for quantifying and measuring solar cell and detector efficiency are described, leading to a derivation of the thermodynamic efficiency limits for solar power generation. Materials and device architectures for minimizing energy loss include single and multijunction cells, singlet fission, and semitransparent cells. Quantifying and achieving very high device reliability is considered, along with criteria for acceptable practical device lifetime. Finally, we discuss processes developed for large-scale and low-cost manufacturing of organic solar cells.


2009 ◽  
Vol 1212 ◽  
Author(s):  
Michael Long ◽  
Bruce E Koppe ◽  
Neil P Redden ◽  
Michael L Boroson ◽  
Tukaram K Hatwar ◽  
...  

AbstractLarge-scale manufacturing of organic light-emitting diode (OLED) panels for lighting and display has been slowed by several manufacturing factors, prominent among which are low throughput due in part to the fine metal mask technology for patterning the red-, green-, and blue-light-emitting pixels and low materials utilization efficiency of the available vacuum deposition technology. To overcome these impediments to low-cost OLED manufacturing, Kodak developed a blanket white-emitting OLED architecture in combination with a pixilated color filter array to eliminate the need for fine metal masks and developed a vacuum deposition technology capable of high deposition rates and high materials utilization efficiency. These developments, taken together, allow much higher throughput and yield on fifth-generation and larger substrates that promise to enable low-cost manufacturing of OLED displays and lighting panels. This paper focuses on the deposition technology Kodak developed, a flash vaporization process that can deliver very high materials utilization efficiency at high deposition rates for small-molecule OLED materials without increasing material decomposition.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Amrita Srivathsan ◽  
Emily Hartop ◽  
Jayanthi Puniamoorthy ◽  
Wan Ting Lee ◽  
Sujatha Narayanan Kutty ◽  
...  

Abstract Background More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. Results We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). Conclusions We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.


Sign in / Sign up

Export Citation Format

Share Document